List Permutations and list lattice operations. #
This file develops theory about the List.Perm
relation and the lattice structure on lists.
theorem
List.Perm.bagInter_right
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(t : List α)
(h : l₁.Perm l₂)
:
(l₁.bagInter t).Perm (l₂.bagInter t)
theorem
List.Perm.bagInter_left
{α : Type u_1}
[DecidableEq α]
(l : List α)
{t₁ t₂ : List α}
(p : t₁.Perm t₂)
:
l.bagInter t₁ = l.bagInter t₂
theorem
List.Perm.bagInter
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ t₁ t₂ : List α}
(hl : l₁.Perm l₂)
(ht : t₁.Perm t₂)
:
(l₁.bagInter t₁).Perm (l₂.bagInter t₂)
theorem
List.Perm.inter_append
{α : Type u_1}
[DecidableEq α]
{l t₁ t₂ : List α}
(h : t₁.Disjoint t₂)
:
theorem
List.Perm.take_inter
{α : Type u_1}
[DecidableEq α]
{xs ys : List α}
(n : ℕ)
(h : xs.Perm ys)
(h' : ys.Nodup)
:
theorem
List.Perm.drop_inter
{α : Type u_1}
[DecidableEq α]
{xs ys : List α}
(n : ℕ)
(h : xs.Perm ys)
(h' : ys.Nodup)
:
theorem
List.Perm.dropSlice_inter
{α : Type u_1}
[DecidableEq α]
{xs ys : List α}
(n m : ℕ)
(h : xs.Perm ys)
(h' : ys.Nodup)
:
(List.dropSlice n m xs).Perm (ys ∩ List.dropSlice n m xs)