Documentation

Mathlib.Data.List.Perm.Lattice

List Permutations and list lattice operations. #

This file develops theory about the List.Perm relation and the lattice structure on lists.

theorem List.Perm.bagInter_right {α : Type u_1} [DecidableEq α] {l₁ l₂ : List α} (t : List α) (h : l₁.Perm l₂) :
(l₁.bagInter t).Perm (l₂.bagInter t)
theorem List.Perm.bagInter_left {α : Type u_1} [DecidableEq α] (l : List α) {t₁ t₂ : List α} (p : t₁.Perm t₂) :
l.bagInter t₁ = l.bagInter t₂
theorem List.Perm.bagInter {α : Type u_1} [DecidableEq α] {l₁ l₂ t₁ t₂ : List α} (hl : l₁.Perm l₂) (ht : t₁.Perm t₂) :
(l₁.bagInter t₁).Perm (l₂.bagInter t₂)
theorem List.Perm.inter_append {α : Type u_1} [DecidableEq α] {l t₁ t₂ : List α} (h : t₁.Disjoint t₂) :
(l (t₁ ++ t₂)).Perm (l t₁ ++ l t₂)
theorem List.Perm.take_inter {α : Type u_1} [DecidableEq α] {xs ys : List α} (n : ) (h : xs.Perm ys) (h' : ys.Nodup) :
(take n xs).Perm (ys.inter (take n xs))
theorem List.Perm.drop_inter {α : Type u_1} [DecidableEq α] {xs ys : List α} (n : ) (h : xs.Perm ys) (h' : ys.Nodup) :
(drop n xs).Perm (ys.inter (drop n xs))
theorem List.Perm.dropSlice_inter {α : Type u_1} [DecidableEq α] {xs ys : List α} (n m : ) (h : xs.Perm ys) (h' : ys.Nodup) :
(dropSlice n m xs).Perm (ys dropSlice n m xs)