Diagonal matrices #
This file defines diagonal matrices and the AddCommMonoidWithOne
structure on matrices.
Main definitions #
Matrix.diagonal d
: matrix with the vectord
along the diagonalMatrix.diag M
: the diagonal of a square matrixMatrix.instAddCommMonoidWithOne
: matrices are an additive commutative monoid with one
diagonal d
is the square matrix such that (diagonal d) i i = d i
and (diagonal d) i j = 0
if i ≠ j
.
Note that bundled versions exist as:
Matrix.diagonalAddMonoidHom
Matrix.diagonalLinearMap
Matrix.diagonalRingHom
Matrix.diagonalAlgHom
Equations
- Matrix.diagonal d = Matrix.of fun (i j : n) => if i = j then d i else 0
Instances For
theorem
Matrix.diagonal_apply
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
(d : n → α)
(i j : n)
:
Matrix.diagonal d i j = if i = j then d i else 0
@[simp]
theorem
Matrix.diagonal_apply_eq
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
(d : n → α)
(i : n)
:
Matrix.diagonal d i i = d i
@[simp]
theorem
Matrix.diagonal_apply_ne
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
(d : n → α)
{i j : n}
(h : i ≠ j)
:
Matrix.diagonal d i j = 0
theorem
Matrix.diagonal_apply_ne'
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
(d : n → α)
{i j : n}
(h : j ≠ i)
:
Matrix.diagonal d i j = 0
@[simp]
theorem
Matrix.diagonal_eq_diagonal_iff
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
{d₁ d₂ : n → α}
:
Matrix.diagonal d₁ = Matrix.diagonal d₂ ↔ ∀ (i : n), d₁ i = d₂ i
@[simp]
theorem
Matrix.diagonal_zero
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
:
(Matrix.diagonal fun (x : n) => 0) = 0
@[simp]
theorem
Matrix.diagonal_transpose
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
(v : n → α)
:
(Matrix.diagonal v).transpose = Matrix.diagonal v
@[simp]
theorem
Matrix.diagonal_add
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddZeroClass α]
(d₁ d₂ : n → α)
:
Matrix.diagonal d₁ + Matrix.diagonal d₂ = Matrix.diagonal fun (i : n) => d₁ i + d₂ i
@[simp]
theorem
Matrix.diagonal_smul
{n : Type u_3}
{R : Type u_7}
{α : Type v}
[DecidableEq n]
[Zero α]
[SMulZeroClass R α]
(r : R)
(d : n → α)
:
Matrix.diagonal (r • d) = r • Matrix.diagonal d
@[simp]
theorem
Matrix.diagonal_neg
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[NegZeroClass α]
(d : n → α)
:
-Matrix.diagonal d = Matrix.diagonal fun (i : n) => -d i
@[simp]
theorem
Matrix.diagonal_sub
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[SubNegZeroMonoid α]
(d₁ d₂ : n → α)
:
Matrix.diagonal d₁ - Matrix.diagonal d₂ = Matrix.diagonal fun (i : n) => d₁ i - d₂ i
instance
Matrix.instNatCastOfZero
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[NatCast α]
:
Equations
- Matrix.instNatCastOfZero = { natCast := fun (m : ℕ) => Matrix.diagonal fun (x : n) => ↑m }
theorem
Matrix.diagonal_natCast
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[NatCast α]
(m : ℕ)
:
(Matrix.diagonal fun (x : n) => ↑m) = ↑m
theorem
Matrix.diagonal_natCast'
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[NatCast α]
(m : ℕ)
:
Matrix.diagonal ↑m = ↑m
theorem
Matrix.diagonal_ofNat
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[NatCast α]
(m : ℕ)
[m.AtLeastTwo]
:
(Matrix.diagonal fun (x : n) => OfNat.ofNat m) = OfNat.ofNat m
theorem
Matrix.diagonal_ofNat'
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[NatCast α]
(m : ℕ)
[m.AtLeastTwo]
:
instance
Matrix.instIntCastOfZero
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[IntCast α]
:
Equations
- Matrix.instIntCastOfZero = { intCast := fun (m : ℤ) => Matrix.diagonal fun (x : n) => ↑m }
theorem
Matrix.diagonal_intCast
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[IntCast α]
(m : ℤ)
:
(Matrix.diagonal fun (x : n) => ↑m) = ↑m
theorem
Matrix.diagonal_intCast'
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[IntCast α]
(m : ℤ)
:
Matrix.diagonal ↑m = ↑m
@[simp]
theorem
Matrix.diagonal_map
{n : Type u_3}
{α : Type v}
{β : Type w}
[DecidableEq n]
[Zero α]
[Zero β]
{f : α → β}
(h : f 0 = 0)
{d : n → α}
:
(Matrix.diagonal d).map f = Matrix.diagonal fun (m : n) => f (d m)
theorem
Matrix.map_natCast
{n : Type u_3}
{α : Type v}
{β : Type w}
[DecidableEq n]
[AddMonoidWithOne α]
[AddMonoidWithOne β]
{f : α → β}
(h : f 0 = 0)
(d : ℕ)
:
(↑d).map f = Matrix.diagonal fun (x : n) => f ↑d
theorem
Matrix.map_ofNat
{n : Type u_3}
{α : Type v}
{β : Type w}
[DecidableEq n]
[AddMonoidWithOne α]
[AddMonoidWithOne β]
{f : α → β}
(h : f 0 = 0)
(d : ℕ)
[d.AtLeastTwo]
:
(OfNat.ofNat d).map f = Matrix.diagonal fun (x : n) => f (OfNat.ofNat d)
theorem
Matrix.map_intCast
{n : Type u_3}
{α : Type v}
{β : Type w}
[DecidableEq n]
[AddGroupWithOne α]
[AddGroupWithOne β]
{f : α → β}
(h : f 0 = 0)
(d : ℤ)
:
(↑d).map f = Matrix.diagonal fun (x : n) => f ↑d
theorem
Matrix.diagonal_unique
{m : Type u_2}
{α : Type v}
[Unique m]
[DecidableEq m]
[Zero α]
(d : m → α)
:
Matrix.diagonal d = Matrix.of fun (x x : m) => d default
Equations
- Matrix.one = { one := Matrix.diagonal fun (x : n) => 1 }
@[simp]
theorem
Matrix.diagonal_one
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
:
(Matrix.diagonal fun (x : n) => 1) = 1
@[simp]
theorem
Matrix.one_apply_eq
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
(i : n)
:
1 i i = 1
@[simp]
theorem
Matrix.one_apply_ne
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
{i j : n}
:
theorem
Matrix.one_apply_ne'
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
{i j : n}
:
@[simp]
theorem
Matrix.map_one
{n : Type u_3}
{α : Type v}
{β : Type w}
[DecidableEq n]
[Zero α]
[One α]
[Zero β]
[One β]
(f : α → β)
(h₀ : f 0 = 0)
(h₁ : f 1 = 1)
:
Matrix.map 1 f = 1
theorem
Matrix.one_eq_pi_single
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
{i j : n}
:
instance
Matrix.instAddMonoidWithOne
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddMonoidWithOne α]
:
AddMonoidWithOne (Matrix n n α)
Equations
instance
Matrix.instAddGroupWithOne
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddGroupWithOne α]
:
AddGroupWithOne (Matrix n n α)
Equations
- Matrix.instAddGroupWithOne = AddGroupWithOne.mk ⋯ SubNegMonoid.zsmul ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Matrix.instAddCommMonoidWithOne
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddCommMonoidWithOne α]
:
AddCommMonoidWithOne (Matrix n n α)
instance
Matrix.instAddCommGroupWithOne
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddCommGroupWithOne α]
:
AddCommGroupWithOne (Matrix n n α)
Equations
@[simp]
theorem
Matrix.diag_diagonal
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
(a : n → α)
:
(Matrix.diagonal a).diag = a
@[simp]
theorem
Matrix.diag_one
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
:
Matrix.diag 1 = 1
@[simp]
theorem
Matrix.transpose_eq_diagonal
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
{M : Matrix n n α}
{v : n → α}
:
M.transpose = Matrix.diagonal v ↔ M = Matrix.diagonal v
@[simp]
theorem
Matrix.transpose_one
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[Zero α]
[One α]
:
Matrix.transpose 1 = 1
@[simp]
theorem
Matrix.transpose_natCast
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddMonoidWithOne α]
(d : ℕ)
:
(↑d).transpose = ↑d
@[simp]
theorem
Matrix.transpose_eq_natCast
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddMonoidWithOne α]
{M : Matrix n n α}
{d : ℕ}
:
@[simp]
theorem
Matrix.transpose_ofNat
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddMonoidWithOne α]
(d : ℕ)
[d.AtLeastTwo]
:
(OfNat.ofNat d).transpose = OfNat.ofNat d
@[simp]
theorem
Matrix.transpose_eq_ofNat
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddMonoidWithOne α]
{M : Matrix n n α}
{d : ℕ}
[d.AtLeastTwo]
:
M.transpose = OfNat.ofNat d ↔ M = OfNat.ofNat d
@[simp]
theorem
Matrix.transpose_intCast
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddGroupWithOne α]
(d : ℤ)
:
(↑d).transpose = ↑d
@[simp]
theorem
Matrix.transpose_eq_intCast
{n : Type u_3}
{α : Type v}
[DecidableEq n]
[AddGroupWithOne α]
{M : Matrix n n α}
{d : ℤ}
:
theorem
Matrix.submatrix_diagonal
{l : Type u_1}
{m : Type u_2}
{α : Type v}
[Zero α]
[DecidableEq m]
[DecidableEq l]
(d : m → α)
(e : l → m)
(he : Function.Injective e)
:
(Matrix.diagonal d).submatrix e e = Matrix.diagonal (d ∘ e)
Given a (m × m)
diagonal matrix defined by a map d : m → α
, if the reindexing map e
is
injective, then the resulting matrix is again diagonal.
theorem
Matrix.submatrix_one
{l : Type u_1}
{m : Type u_2}
{α : Type v}
[Zero α]
[One α]
[DecidableEq m]
[DecidableEq l]
(e : l → m)
(he : Function.Injective e)
:
Matrix.submatrix 1 e e = 1
simp
lemmas for Matrix.submatrix
s interaction with Matrix.diagonal
, 1
, and Matrix.mul
for when the mappings are bundled.
@[simp]
theorem
Matrix.submatrix_diagonal_embedding
{l : Type u_1}
{m : Type u_2}
{α : Type v}
[Zero α]
[DecidableEq m]
[DecidableEq l]
(d : m → α)
(e : l ↪ m)
:
(Matrix.diagonal d).submatrix ⇑e ⇑e = Matrix.diagonal (d ∘ ⇑e)
@[simp]
theorem
Matrix.submatrix_diagonal_equiv
{l : Type u_1}
{m : Type u_2}
{α : Type v}
[Zero α]
[DecidableEq m]
[DecidableEq l]
(d : m → α)
(e : l ≃ m)
:
(Matrix.diagonal d).submatrix ⇑e ⇑e = Matrix.diagonal (d ∘ ⇑e)
@[simp]
theorem
Matrix.submatrix_one_embedding
{l : Type u_1}
{m : Type u_2}
{α : Type v}
[Zero α]
[One α]
[DecidableEq m]
[DecidableEq l]
(e : l ↪ m)
:
Matrix.submatrix 1 ⇑e ⇑e = 1
@[simp]
theorem
Matrix.submatrix_one_equiv
{l : Type u_1}
{m : Type u_2}
{α : Type v}
[Zero α]
[One α]
[DecidableEq m]
[DecidableEq l]
(e : l ≃ m)
:
Matrix.submatrix 1 ⇑e ⇑e = 1