The antidiagonal on a multiset. #
The antidiagonal of a multiset s
consists of all pairs (t₁, t₂)
such that t₁ + t₂ = s
. These pairs are counted with multiplicities.
The antidiagonal of a multiset s
consists of all pairs (t₁, t₂)
such that t₁ + t₂ = s
. These pairs are counted with multiplicities.
Equations
- s.antidiagonal = Quot.liftOn s (fun (l : List α) => ↑(Multiset.powersetAux l).revzip) ⋯
Instances For
@[simp]
@[simp]
A pair (t₁, t₂)
of multisets is contained in antidiagonal s
if and only if t₁ + t₂ = s
.
@[simp]
@[simp]
@[simp]
theorem
Multiset.antidiagonal_cons
{α : Type u_1}
(a : α)
(s : Multiset α)
:
(a ::ₘ s).antidiagonal = map (Prod.map id (cons a)) s.antidiagonal + map (Prod.map (cons a) id) s.antidiagonal
@[simp]