Bind operation for multisets #
This file defines a few basic operations on Multiset
, notably the monadic bind.
Main declarations #
Multiset.join
: The join, aka union or sum, of multisets.Multiset.bind
: The bind of a multiset-indexed family of multisets.Multiset.product
: Cartesian product of two multisets.Multiset.sigma
: Disjoint sum of multisets in a sigma type.
Join #
join S
, where S
is a multiset of multisets, is the lift of the list join
operation, that is, the union of all the sets.
join {{1, 2}, {1, 2}, {0, 1}} = {0, 1, 1, 1, 2, 2}
Equations
Instances For
theorem
Multiset.mem_join
{α : Type u_1}
{a : α}
{S : Multiset (Multiset α)}
:
Iff (Membership.mem S.join a) (Exists fun (s : Multiset α) => And (Membership.mem S s) (Membership.mem s a))
Bind #
theorem
Multiset.singleton_bind
{α : Type u_1}
{β : Type v}
(a : α)
(f : α → Multiset β)
:
Eq ((Singleton.singleton a).bind f) (f a)
theorem
Multiset.bind_singleton
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(f : α → β)
:
Eq (s.bind fun (x : α) => Singleton.singleton (f x)) (map f s)
theorem
Multiset.mem_bind
{α : Type u_1}
{β : Type v}
{b : β}
{s : Multiset α}
{f : α → Multiset β}
:
Iff (Membership.mem (s.bind f) b) (Exists fun (a : α) => And (Membership.mem s a) (Membership.mem (f a) b))
theorem
Multiset.le_bind
{α : Type u_4}
{β : Type u_5}
{f : α → Multiset β}
(S : Multiset α)
{x : α}
(hx : Membership.mem S x)
:
theorem
Multiset.nodup_bind
{α : Type u_1}
{β : Type v}
{s : Multiset α}
{f : α → Multiset β}
:
Iff (s.bind f).Nodup (And (∀ (a : α), Membership.mem s a → (f a).Nodup) (Pairwise (Function.onFun Disjoint f) s))
theorem
Multiset.dedup_bind_dedup
{α : Type u_1}
{β : Type v}
[DecidableEq α]
[DecidableEq β]
(s : Multiset α)
(f : α → Multiset β)
:
Product of two multisets #
Equations
- Eq Multiset.instSProd { sprod := Multiset.product }
Instances For
theorem
Multiset.coe_product
{α : Type u_1}
{β : Type v}
(l₁ : List α)
(l₂ : List β)
:
Eq (SProd.sprod (ofList l₁) (ofList l₂)) (ofList (SProd.sprod l₁ l₂))
theorem
Multiset.cons_product
{α : Type u_1}
{β : Type v}
(a : α)
(s : Multiset α)
(t : Multiset β)
:
Eq (SProd.sprod (cons a s) t) (HAdd.hAdd (map (Prod.mk a) t) (SProd.sprod s t))
theorem
Multiset.product_cons
{α : Type u_1}
{β : Type v}
(b : β)
(s : Multiset α)
(t : Multiset β)
:
Eq (SProd.sprod s (cons b t)) (HAdd.hAdd (map (fun (a : α) => { fst := a, snd := b }) s) (SProd.sprod s t))
theorem
Multiset.product_singleton
{α : Type u_1}
{β : Type v}
(a : α)
(b : β)
:
Eq (SProd.sprod (Singleton.singleton a) (Singleton.singleton b)) (Singleton.singleton { fst := a, snd := b })
theorem
Multiset.add_product
{α : Type u_1}
{β : Type v}
(s t : Multiset α)
(u : Multiset β)
:
Eq (SProd.sprod (HAdd.hAdd s t) u) (HAdd.hAdd (SProd.sprod s u) (SProd.sprod t u))
theorem
Multiset.product_add
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(t u : Multiset β)
:
Eq (SProd.sprod s (HAdd.hAdd t u)) (HAdd.hAdd (SProd.sprod s t) (SProd.sprod s u))
theorem
Multiset.mem_product
{α : Type u_1}
{β : Type v}
{s : Multiset α}
{t : Multiset β}
{p : Prod α β}
:
Iff (Membership.mem (s.product t) p) (And (Membership.mem s p.fst) (Membership.mem t p.snd))
theorem
Multiset.Nodup.product
{α : Type u_1}
{β : Type v}
{s : Multiset α}
{t : Multiset β}
:
s.Nodup → t.Nodup → (SProd.sprod s t).Nodup
Disjoint sum of multisets #
def
Multiset.sigma
{α : Type u_1}
{σ : α → Type u_4}
(s : Multiset α)
(t : (a : α) → Multiset (σ a))
:
Multiset ((a : α) × σ a)
Multiset.sigma s t
is the dependent version of Multiset.product
. It is the sum of
(a, b)
as a
ranges over s
and b
ranges over t a
.
Equations
- Eq (s.sigma t) (s.bind fun (a : α) => Multiset.map (Sigma.mk a) (t a))
Instances For
theorem
Multiset.zero_sigma
{α : Type u_1}
{σ : α → Type u_4}
(t : (a : α) → Multiset (σ a))
:
Eq (Multiset.sigma 0 t) 0
theorem
Multiset.sigma_singleton
{α : Type u_1}
{β : Type v}
(a : α)
(b : α → β)
:
Eq ((Singleton.singleton a).sigma fun (a : α) => Singleton.singleton (b a)) (Singleton.singleton ⟨a, b a⟩)
theorem
Multiset.mem_sigma
{α : Type u_1}
{σ : α → Type u_4}
{s : Multiset α}
{t : (a : α) → Multiset (σ a)}
{p : (a : α) × σ a}
:
Iff (Membership.mem (s.sigma t) p) (And (Membership.mem s p.fst) (Membership.mem (t p.fst) p.snd))