Documentation

Mathlib.Data.NNRat.BigOperators

Casting lemmas for non-negative rational numbers involving sums and products #

@[deprecated NNRat.cast_listSum (since := "2025-06-30")]

Alias of NNRat.cast_listSum.

@[deprecated NNRat.cast_listProd (since := "2025-06-30")]

Alias of NNRat.cast_listProd.

@[deprecated NNRat.cast_multisetSum (since := "2025-06-30")]

Alias of NNRat.cast_multisetSum.

theorem NNRat.cast_sum {α : Type u_1} {K : Type u_2} [DivisionSemiring K] [CharZero K] (s : Finset α) (f : αℚ≥0) :
(∑ as, f a) = as, (f a)
@[deprecated NNRat.cast_sum (since := "2025-06-30")]
theorem NNRat.coe_sum {α : Type u_1} {K : Type u_2} [DivisionSemiring K] [CharZero K] (s : Finset α) (f : αℚ≥0) :
(∑ as, f a) = as, (f a)

Alias of NNRat.cast_sum.

@[deprecated NNRat.cast_multisetProd (since := "2025-06-30")]

Alias of NNRat.cast_multisetProd.

theorem NNRat.cast_prod {α : Type u_1} {K : Type u_2} [Semifield K] [CharZero K] (s : Finset α) (f : αℚ≥0) :
(∏ as, f a) = as, (f a)
@[deprecated NNRat.cast_prod (since := "2025-06-30")]
theorem NNRat.coe_prod {α : Type u_1} {K : Type u_2} [Semifield K] [CharZero K] (s : Finset α) (f : αℚ≥0) :
(∏ as, f a) = as, (f a)

Alias of NNRat.cast_prod.

theorem NNRat.toNNRat_sum_of_nonneg {α : Type u_1} {s : Finset α} {f : α} (hf : as, 0 f a) :
(∑ as, f a).toNNRat = as, (f a).toNNRat
theorem NNRat.toNNRat_prod_of_nonneg {α : Type u_1} {s : Finset α} {f : α} (hf : as, 0 f a) :
(∏ as, f a).toNNRat = as, (f a).toNNRat