Documentation

Mathlib.Data.Ordering.Lemmas

Some Ordering lemmas #

@[simp]
theorem Ordering.ite_eq_lt_distrib (c : Prop) [Decidable c] (a b : Ordering) :
((if c then a else b) = lt) = if c then a = lt else b = lt
@[simp]
theorem Ordering.ite_eq_eq_distrib (c : Prop) [Decidable c] (a b : Ordering) :
((if c then a else b) = eq) = if c then a = eq else b = eq
@[simp]
theorem Ordering.ite_eq_gt_distrib (c : Prop) [Decidable c] (a b : Ordering) :
((if c then a else b) = gt) = if c then a = gt else b = gt
@[simp]
theorem Ordering.dthen_eq_then (o₁ o₂ : Ordering) :
(o₁.dthen fun (x : o₁ = eq) => o₂) = o₁.then o₂
@[simp]
theorem cmpUsing_eq_lt {α : Type u} {lt : ααProp} [DecidableRel lt] (a b : α) :
(cmpUsing lt a b = Ordering.lt) = lt a b
@[simp]
theorem cmpUsing_eq_gt {α : Type u} {lt : ααProp} [DecidableRel lt] [IsStrictOrder α lt] (a b : α) :
cmpUsing lt a b = Ordering.gt lt b a
@[simp]
theorem cmpUsing_eq_eq {α : Type u} {lt : ααProp} [DecidableRel lt] (a b : α) :
cmpUsing lt a b = Ordering.eq ¬lt a b ¬lt b a