Documentation
Mathlib
.
Data
.
Ordering
.
Lemmas
Search
return to top
source
Imports
Init
Mathlib.Data.Ordering.Basic
Mathlib.Order.Defs.Unbundled
Imported by
Ordering
.
ite_eq_lt_distrib
Ordering
.
ite_eq_eq_distrib
Ordering
.
ite_eq_gt_distrib
Ordering
.
dthen_eq_then
cmpUsing_eq_lt
cmpUsing_eq_gt
cmpUsing_eq_eq
Some
Ordering
lemmas
#
source
@[simp]
theorem
Ordering
.
ite_eq_lt_distrib
(c :
Prop
)
[
Decidable
c
]
(a b :
Ordering
)
:
((
if
c
then
a
else
b
)
=
lt
)
=
if
c
then
a
=
lt
else
b
=
lt
source
@[simp]
theorem
Ordering
.
ite_eq_eq_distrib
(c :
Prop
)
[
Decidable
c
]
(a b :
Ordering
)
:
((
if
c
then
a
else
b
)
=
eq
)
=
if
c
then
a
=
eq
else
b
=
eq
source
@[simp]
theorem
Ordering
.
ite_eq_gt_distrib
(c :
Prop
)
[
Decidable
c
]
(a b :
Ordering
)
:
((
if
c
then
a
else
b
)
=
gt
)
=
if
c
then
a
=
gt
else
b
=
gt
source
@[simp]
theorem
Ordering
.
dthen_eq_then
(o₁ o₂ :
Ordering
)
:
(
o₁
.
dthen
fun (
x
:
o₁
=
eq
) =>
o₂
)
=
o₁
.
then
o₂
source
@[simp]
theorem
cmpUsing_eq_lt
{α :
Type
u}
{lt :
α
→
α
→
Prop
}
[
DecidableRel
lt
]
(a b :
α
)
:
(
cmpUsing
lt
a
b
=
Ordering.lt
)
=
lt
a
b
source
@[simp]
theorem
cmpUsing_eq_gt
{α :
Type
u}
{lt :
α
→
α
→
Prop
}
[
DecidableRel
lt
]
[
IsStrictOrder
α
lt
]
(a b :
α
)
:
cmpUsing
lt
a
b
=
Ordering.gt
↔
lt
b
a
source
@[simp]
theorem
cmpUsing_eq_eq
{α :
Type
u}
{lt :
α
→
α
→
Prop
}
[
DecidableRel
lt
]
(a b :
α
)
:
cmpUsing
lt
a
b
=
Ordering.eq
↔
¬
lt
a
b
∧
¬
lt
b
a