Documentation

Mathlib.Data.Real.ENatENNReal

Coercion from ℕ∞ to ℝ≥0∞ #

In this file we define a coercion from ℕ∞ to ℝ≥0∞ and prove some basic lemmas about this map.

Coercion from ℕ∞ to ℝ≥0∞.

Equations
Instances For

    Coercion ℕ∞ → ℝ≥0∞ as a ring homomorphism.

    Equations
    Instances For
      @[simp]
      @[simp]
      theorem ENat.toENNReal_coe (n : ) :
      n = n
      @[simp]
      theorem ENat.toENNReal_inj {m n : ℕ∞} :
      m = n m = n
      @[deprecated ENat.toENNReal_inj (since := "2024-12-29")]
      theorem ENat.toENNReal_coe_eq_iff {m n : ℕ∞} :
      m = n m = n

      Alias of ENat.toENNReal_inj.

      @[simp]
      theorem ENat.toENNReal_eq_top {n : ℕ∞} :
      n = n =
      @[simp]
      theorem ENat.toENNReal_le {m n : ℕ∞} :
      m n m n
      @[simp]
      theorem ENat.toENNReal_lt {m n : ℕ∞} :
      m < n m < n
      @[simp]
      theorem ENat.toENNReal_lt_top {n : ℕ∞} :
      n < n <
      @[simp]
      theorem ENat.toENNReal_zero :
      0 = 0
      @[simp]
      theorem ENat.toENNReal_add (m n : ℕ∞) :
      ↑(m + n) = m + n
      @[simp]
      theorem ENat.toENNReal_one :
      1 = 1
      @[simp]
      theorem ENat.toENNReal_mul (m n : ℕ∞) :
      ↑(m * n) = m * n
      @[simp]
      theorem ENat.toENNReal_pow (x : ℕ∞) (n : ) :
      ↑(x ^ n) = x ^ n
      @[simp]
      theorem ENat.toENNReal_min (m n : ℕ∞) :
      ↑(m n) = m n
      @[simp]
      theorem ENat.toENNReal_max (m n : ℕ∞) :
      ↑(m n) = m n
      @[simp]
      theorem ENat.toENNReal_sub (m n : ℕ∞) :
      ↑(m - n) = m - n