Uniform separation #
This file defines a notion of separation of a set relative to an relation.
For a relation R, a R-separated set s is a set such that every pair of elements of s is
R-unrelated.
The concept of uniformly separated sets is used to define two further notions of separation:
- Metric separation: 
Metric.IsSeparated, defined using the small distance relation. - Dynamical nets: 
Dynamics.IsDynNetIn, defined using the dynamical relation. 
TODO #
- Actually use 
SetRel.IsSeparatedto define the above two notions. - Link to the notion of separation given by pairwise disjoint balls.
 
@[simp]
theorem
SetRel.IsSeparated.of_subsingleton
{X : Type u_1}
{R : SetRel X X}
{s : Set X}
(hs : s.Subsingleton)
 :
R.IsSeparated s
theorem
Set.Subsingleton.relIsSeparated
{X : Type u_1}
{R : SetRel X X}
{s : Set X}
(hs : s.Subsingleton)
 :
R.IsSeparated s
Alias of SetRel.IsSeparated.of_subsingleton.
theorem
SetRel.IsSeparated.mono_left
{X : Type u_1}
{R S : SetRel X X}
{s : Set X}
(hUV : R ⊆ S)
(hs : S.IsSeparated s)
 :
R.IsSeparated s
theorem
SetRel.IsSeparated.mono_right
{X : Type u_1}
{R : SetRel X X}
{s t : Set X}
(hst : s ⊆ t)
(ht : R.IsSeparated t)
 :
R.IsSeparated s
theorem
SetRel.isSeparated_insert_of_notMem
{X : Type u_1}
{R : SetRel X X}
{s : Set X}
{x : X}
[R.IsSymm]
(hx : x ∉ s)
 :
theorem
SetRel.IsSeparated.insert
{X : Type u_1}
{R : SetRel X X}
{s : Set X}
{x : X}
[R.IsSymm]
(hs : R.IsSeparated s)
(h : ∀ y ∈ s, (x, y) ∈ R → x = y)
 :
R.IsSeparated (insert x s)