Documentation

Mathlib.Data.Set.SMulAntidiagonal

Antidiagonal for scalar multiplication #

Given partially ordered sets G and P, with an action of G on P, we construct, for any element a in P and subsets s in G and t in P, the set of all pairs of an element in s and an element in t that scalar-multiply to a.

Definitions #

def Set.vaddAntidiagonal {G : Type u_1} {P : Type u_2} [VAdd G P] (s : Set G) (t : Set P) (a : P) :
Set (G × P)

vaddAntidiagonal s t a is the set of all pairs of an element in s and an element in t that vector-add to a.

Equations
Instances For
    def Set.smulAntidiagonal {G : Type u_1} {P : Type u_2} [SMul G P] (s : Set G) (t : Set P) (a : P) :
    Set (G × P)

    smulAntidiagonal s t a is the set of all pairs of an element in s and an element in t that scalar multiply to a.

    Equations
    Instances For
      @[simp]
      theorem Set.mem_vaddAntidiagonal {G : Type u_1} {P : Type u_2} [VAdd G P] {s : Set G} {t : Set P} {a : P} {x : G × P} :
      x s.vaddAntidiagonal t a x.1 s x.2 t x.1 +ᵥ x.2 = a
      @[simp]
      theorem Set.mem_smulAntidiagonal {G : Type u_1} {P : Type u_2} [SMul G P] {s : Set G} {t : Set P} {a : P} {x : G × P} :
      x s.smulAntidiagonal t a x.1 s x.2 t x.1 x.2 = a
      theorem Set.vaddAntidiagonal_mono_left {G : Type u_1} {P : Type u_2} [VAdd G P] {s₁ : Set G} {s₂ : Set G} {t : Set P} {a : P} (h : s₁ s₂) :
      s₁.vaddAntidiagonal t a s₂.vaddAntidiagonal t a
      theorem Set.smulAntidiagonal_mono_left {G : Type u_1} {P : Type u_2} [SMul G P] {s₁ : Set G} {s₂ : Set G} {t : Set P} {a : P} (h : s₁ s₂) :
      s₁.smulAntidiagonal t a s₂.smulAntidiagonal t a
      theorem Set.vaddAntidiagonal_mono_right {G : Type u_1} {P : Type u_2} [VAdd G P] {s : Set G} {t₁ : Set P} {t₂ : Set P} {a : P} (h : t₁ t₂) :
      s.vaddAntidiagonal t₁ a s.vaddAntidiagonal t₂ a
      theorem Set.smulAntidiagonal_mono_right {G : Type u_1} {P : Type u_2} [SMul G P] {s : Set G} {t₁ : Set P} {t₂ : Set P} {a : P} (h : t₁ t₂) :
      s.smulAntidiagonal t₁ a s.smulAntidiagonal t₂ a
      theorem Set.VAddAntidiagonal.fst_eq_fst_iff_snd_eq_snd {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [VAdd G P] [IsCancelVAdd G P] {x : (s.vaddAntidiagonal t a)} {y : (s.vaddAntidiagonal t a)} :
      (x).1 = (y).1 (x).2 = (y).2
      theorem Set.SMulAntidiagonal.fst_eq_fst_iff_snd_eq_snd {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [SMul G P] [IsCancelSMul G P] {x : (s.smulAntidiagonal t a)} {y : (s.smulAntidiagonal t a)} :
      (x).1 = (y).1 (x).2 = (y).2
      theorem Set.VAddAntidiagonal.eq_of_fst_eq_fst {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [VAdd G P] [IsCancelVAdd G P] {x : (s.vaddAntidiagonal t a)} {y : (s.vaddAntidiagonal t a)} (h : (x).1 = (y).1) :
      x = y
      theorem Set.SMulAntidiagonal.eq_of_fst_eq_fst {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [SMul G P] [IsCancelSMul G P] {x : (s.smulAntidiagonal t a)} {y : (s.smulAntidiagonal t a)} (h : (x).1 = (y).1) :
      x = y
      theorem Set.VAddAntidiagonal.eq_of_snd_eq_snd {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [VAdd G P] [IsCancelVAdd G P] {x : (s.vaddAntidiagonal t a)} {y : (s.vaddAntidiagonal t a)} (h : (x).2 = (y).2) :
      x = y
      theorem Set.SMulAntidiagonal.eq_of_snd_eq_snd {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [SMul G P] [IsCancelSMul G P] {x : (s.smulAntidiagonal t a)} {y : (s.smulAntidiagonal t a)} (h : (x).2 = (y).2) :
      x = y
      theorem Set.VAddAntidiagonal.eq_of_fst_le_fst_of_snd_le_snd {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [PartialOrder G] [PartialOrder P] [VAdd G P] [IsOrderedCancelVAdd G P] {x : (s.vaddAntidiagonal t a)} {y : (s.vaddAntidiagonal t a)} (h₁ : (x).1 (y).1) (h₂ : (x).2 (y).2) :
      x = y
      theorem Set.SMulAntidiagonal.eq_of_fst_le_fst_of_snd_le_snd {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} {a : P} [PartialOrder G] [PartialOrder P] [SMul G P] [IsOrderedCancelSMul G P] {x : (s.smulAntidiagonal t a)} {y : (s.smulAntidiagonal t a)} (h₁ : (x).1 (y).1) (h₂ : (x).2 (y).2) :
      x = y
      theorem Set.VAddAntidiagonal.finite_of_isPWO {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} [PartialOrder G] [PartialOrder P] [VAdd G P] [IsOrderedCancelVAdd G P] (hs : s.IsPWO) (ht : t.IsPWO) (a : P) :
      (s.vaddAntidiagonal t a).Finite
      theorem Set.SMulAntidiagonal.finite_of_isPWO {G : Type u_1} {P : Type u_2} {s : Set G} {t : Set P} [PartialOrder G] [PartialOrder P] [SMul G P] [IsOrderedCancelSMul G P] (hs : s.IsPWO) (ht : t.IsPWO) (a : P) :
      (s.smulAntidiagonal t a).Finite