Antidiagonal for scalar multiplication #
Given partially ordered sets G
and P
, with an action of G
on P
, we construct, for any
element a
in P
and subsets s
in G
and t
in P
, the set of all pairs of an element in s
and an element in t
that scalar-multiply to a
.
Definitions #
- SMul.antidiagonal : Set-valued antidiagonal for SMul.
- VAdd.antidiagonal : Set-valued antidiagonal for VAdd.
smulAntidiagonal s t a
is the set of all pairs of an element in s
and an
element in t
that scalar multiply to a
.
Instances For
vaddAntidiagonal s t a
is the set of all pairs of an element in s
and an
element in t
that vector-add to a
.
Instances For
theorem
Set.SMulAntidiagonal.eq_of_fst_eq_fst
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
{a : P}
[SMul G P]
[IsCancelSMul G P]
{x y : ↑(s.smulAntidiagonal t a)}
(h : (↑x).1 = (↑y).1)
:
x = y
theorem
Set.VAddAntidiagonal.eq_of_fst_eq_fst
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
{a : P}
[VAdd G P]
[IsCancelVAdd G P]
{x y : ↑(s.vaddAntidiagonal t a)}
(h : (↑x).1 = (↑y).1)
:
x = y
theorem
Set.SMulAntidiagonal.eq_of_snd_eq_snd
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
{a : P}
[SMul G P]
[IsCancelSMul G P]
{x y : ↑(s.smulAntidiagonal t a)}
(h : (↑x).2 = (↑y).2)
:
x = y
theorem
Set.VAddAntidiagonal.eq_of_snd_eq_snd
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
{a : P}
[VAdd G P]
[IsCancelVAdd G P]
{x y : ↑(s.vaddAntidiagonal t a)}
(h : (↑x).2 = (↑y).2)
:
x = y
theorem
Set.SMulAntidiagonal.eq_of_fst_le_fst_of_snd_le_snd
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
{a : P}
[PartialOrder G]
[PartialOrder P]
[SMul G P]
[IsOrderedCancelSMul G P]
{x y : ↑(s.smulAntidiagonal t a)}
(h₁ : (↑x).1 ≤ (↑y).1)
(h₂ : (↑x).2 ≤ (↑y).2)
:
x = y
theorem
Set.VAddAntidiagonal.eq_of_fst_le_fst_of_snd_le_snd
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
{a : P}
[PartialOrder G]
[PartialOrder P]
[VAdd G P]
[IsOrderedCancelVAdd G P]
{x y : ↑(s.vaddAntidiagonal t a)}
(h₁ : (↑x).1 ≤ (↑y).1)
(h₂ : (↑x).2 ≤ (↑y).2)
:
x = y
theorem
Set.SMulAntidiagonal.finite_of_isPWO
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
[PartialOrder G]
[PartialOrder P]
[SMul G P]
[IsOrderedCancelSMul G P]
(hs : s.IsPWO)
(ht : t.IsPWO)
(a : P)
:
(s.smulAntidiagonal t a).Finite
theorem
Set.VAddAntidiagonal.finite_of_isPWO
{G : Type u_1}
{P : Type u_2}
{s : Set G}
{t : Set P}
[PartialOrder G]
[PartialOrder P]
[VAdd G P]
[IsOrderedCancelVAdd G P]
(hs : s.IsPWO)
(ht : t.IsPWO)
(a : P)
:
(s.vaddAntidiagonal t a).Finite