Documentation

Mathlib.Deprecated.Cardinal.Finite

Deprecated material on PartENat.card. #

@[deprecated ENat.card (since := "2024-12-01")]
def PartENat.card (α : Type u_1) :

PartENat.card α is the cardinality of α as an extended natural number. If α is infinite, PartENat.card α = ⊤.

Equations
Instances For
    @[simp]
    @[simp]
    @[simp]
    theorem PartENat.card_sum (α : Type u_1) (β : Type u_2) :
    card (α β) = card α + card β
    theorem PartENat.card_congr {α : Type u_1} {β : Type u_2} (f : α β) :
    card α = card β
    @[simp]
    theorem PartENat.card_ulift (α : Type u_1) :
    @[simp]
    theorem PartENat.card_plift (α : Type u_1) :
    card (PLift α) = card α
    theorem PartENat.card_image_of_injOn {α : Type u} {β : Type v} {f : αβ} {s : Set α} (h : Set.InjOn f s) :
    card (f '' s) = card s
    theorem PartENat.card_image_of_injective {α : Type u} {β : Type v} (f : αβ) (s : Set α) (h : Function.Injective f) :
    card (f '' s) = card s
    @[simp]
    @[simp]
    @[simp]
    @[simp]
    @[deprecated ENat.card_eq_coe_natCard (since := "2024-11-30")]
    theorem PartENat.card_eq_coe_natCard (α : Type u_1) [Finite α] :
    card α = (Nat.card α)
    @[deprecated PartENat.card_eq_coe_natCard (since := "2024-05-25")]
    theorem PartENat.card_eq_coe_nat_card (α : Type u_1) [Finite α] :
    card α = (Nat.card α)

    Alias of PartENat.card_eq_coe_natCard.