Deprecated material on PartENat.card
. #
@[deprecated ENat.card]
PartENat.card α
is the cardinality of α
as an extended natural number.
If α
is infinite, PartENat.card α = ⊤
.
Equations
Instances For
@[simp]
theorem
PartENat.card_eq_coe_fintype_card
{α : Type u}
[Fintype α]
:
PartENat.card α = ↑(Fintype.card α)
@[simp]
@[simp]
theorem
PartENat.card_sum
(α : Type u_1)
(β : Type u_2)
:
PartENat.card (α ⊕ β) = PartENat.card α + PartENat.card β
@[simp]
theorem
PartENat.card_image_of_injOn
{α : Type u}
{β : Type v}
{f : α → β}
{s : Set α}
(h : Set.InjOn f s)
:
PartENat.card ↑(f '' s) = PartENat.card ↑s
theorem
PartENat.card_image_of_injective
{α : Type u}
{β : Type v}
(f : α → β)
(s : Set α)
(h : Function.Injective f)
:
PartENat.card ↑(f '' s) = PartENat.card ↑s
@[simp]
theorem
Cardinal.natCast_le_toPartENat_iff
{n : ℕ}
{c : Cardinal.{u_1}}
:
↑n ≤ Cardinal.toPartENat c ↔ ↑n ≤ c
@[simp]
theorem
Cardinal.toPartENat_le_natCast_iff
{c : Cardinal.{u_1}}
{n : ℕ}
:
Cardinal.toPartENat c ≤ ↑n ↔ c ≤ ↑n
@[simp]
theorem
Cardinal.natCast_eq_toPartENat_iff
{n : ℕ}
{c : Cardinal.{u_1}}
:
↑n = Cardinal.toPartENat c ↔ ↑n = c
@[simp]
theorem
Cardinal.toPartENat_eq_natCast_iff
{c : Cardinal.{u_1}}
{n : ℕ}
:
Cardinal.toPartENat c = ↑n ↔ c = ↑n
@[simp]
theorem
Cardinal.natCast_lt_toPartENat_iff
{n : ℕ}
{c : Cardinal.{u_1}}
:
↑n < Cardinal.toPartENat c ↔ ↑n < c
@[simp]
theorem
Cardinal.toPartENat_lt_natCast_iff
{n : ℕ}
{c : Cardinal.{u_1}}
:
Cardinal.toPartENat c < ↑n ↔ c < ↑n
@[deprecated ENat.card_eq_coe_natCard]
@[deprecated PartENat.card_eq_coe_natCard]
Alias of PartENat.card_eq_coe_natCard
.