Deprecated instances about order structures. #
@[deprecated "This was a leftover from Lean 3, and has not been needed." (since := "2024-11-26")]
instance
isStrictTotalOrder_of_linearOrder
{α : Type u_1}
[LinearOrder α]
:
IsStrictTotalOrder α fun (x1 x2 : α) => x1 < x2
Lemmas of the form b ≤ c → a ≤ 1 → b * a ≤ c
.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_le_of_le_of_le_one_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : b ≤ c)
(ha : a ≤ 1)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_le_of_lt_one_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
(bc : b ≤ c)
(ha : a < 1)
(b0 : 0 < b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_lt_of_le_one_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : b < c)
(ha : a ≤ 1)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Left.mul_le_one_of_le_of_le
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[PosMulMono α]
(ha : a ≤ 1)
(hb : b ≤ 1)
(a0 : 0 ≤ a)
:
Assumes left covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Left.mul_lt_of_le_of_lt_one_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[PosMulStrictMono α]
(ha : a ≤ 1)
(hb : b < 1)
(a0 : 0 < a)
:
Assumes left covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Left.mul_lt_of_lt_of_le_one_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[PosMulMono α]
(ha : a < 1)
(hb : b ≤ 1)
(a0 : 0 ≤ a)
:
Assumes left covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_le_of_le_of_le_one'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosMono α]
(bc : b ≤ c)
(ha : a ≤ 1)
(a0 : 0 ≤ a)
(c0 : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_lt_of_le_one'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosStrictMono α]
(bc : b < c)
(ha : a ≤ 1)
(a0 : 0 < a)
(c0 : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_le_of_lt_one'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
[MulPosMono α]
(bc : b ≤ c)
(ha : a < 1)
(a0 : 0 ≤ a)
(c0 : 0 < c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_lt_of_lt_one_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosStrictMono α]
(bc : b < c)
(ha : a ≤ 1)
(a0 : 0 < a)
(c0 : 0 ≤ c)
:
Lemmas of the form b ≤ c → 1 ≤ a → b ≤ c * a
.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_mul_of_le_of_one_le_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : b ≤ c)
(ha : 1 ≤ a)
(hc : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_le_of_one_lt_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
(bc : b ≤ c)
(ha : 1 < a)
(c0 : 0 < c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_lt_of_one_le_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : b < c)
(ha : 1 ≤ a)
(hc : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Left.one_le_mul_of_le_of_le
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[PosMulMono α]
(ha : 1 ≤ a)
(hb : 1 ≤ b)
(a0 : 0 ≤ a)
:
Assumes left covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Left.one_lt_mul_of_le_of_lt_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[PosMulStrictMono α]
(ha : 1 ≤ a)
(hb : 1 < b)
(a0 : 0 < a)
:
Assumes left covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Left.lt_mul_of_lt_of_one_le_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[PosMulMono α]
(ha : 1 < a)
(hb : 1 ≤ b)
(a0 : 0 ≤ a)
:
Assumes left covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_mul_of_le_of_one_le'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosMono α]
(bc : b ≤ c)
(ha : 1 ≤ a)
(a0 : 0 ≤ a)
(b0 : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_le_of_one_lt'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
[MulPosMono α]
(bc : b ≤ c)
(ha : 1 < a)
(a0 : 0 ≤ a)
(b0 : 0 < b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_lt_of_one_le'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosStrictMono α]
(bc : b < c)
(ha : 1 ≤ a)
(a0 : 0 < a)
(b0 : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_lt_of_one_lt_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
[MulPosStrictMono α]
(bc : b < c)
(ha : 1 < a)
(a0 : 0 < a)
(b0 : 0 < b)
:
Lemmas of the form a ≤ 1 → b ≤ c → a * b ≤ c
.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_le_of_le_one_of_le_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(ha : a ≤ 1)
(h : b ≤ c)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_lt_one_of_le_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosStrictMono α]
(ha : a < 1)
(h : b ≤ c)
(hb : 0 < b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_le_one_of_lt_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(ha : a ≤ 1)
(h : b < c)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.mul_lt_one_of_lt_of_le_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosStrictMono α]
(ha : a < 1)
(hb : b ≤ 1)
(b0 : 0 < b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.mul_lt_one_of_le_of_lt_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosMono α]
(ha : a ≤ 1)
(hb : b < 1)
(b0 : 0 ≤ b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_lt_one_of_lt_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
[MulPosStrictMono α]
(ha : a < 1)
(bc : b < c)
(a0 : 0 < a)
(c0 : 0 < c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.mul_le_one_of_le_of_le
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosMono α]
(ha : a ≤ 1)
(hb : b ≤ 1)
(b0 : 0 ≤ b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_le_of_le_one_of_le'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosMono α]
(ha : a ≤ 1)
(bc : b ≤ c)
(a0 : 0 ≤ a)
(c0 : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_lt_one_of_le'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
[MulPosStrictMono α]
(ha : a < 1)
(bc : b ≤ c)
(a0 : 0 ≤ a)
(c0 : 0 < c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
mul_lt_of_le_one_of_lt'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulStrictMono α]
[MulPosMono α]
(ha : a ≤ 1)
(bc : b < c)
(a0 : 0 < a)
(c0 : 0 ≤ c)
:
Lemmas of the form 1 ≤ a → b ≤ c → b ≤ a * c
.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_one_lt_of_le_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosStrictMono α]
(ha : 1 < a)
(h : b ≤ c)
(hc : 0 < c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_one_le_of_lt_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(ha : 1 ≤ a)
(h : b < c)
(hc : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_one_lt_of_lt_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosStrictMono α]
(ha : 1 < a)
(h : b < c)
(hc : 0 < c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.one_lt_mul_of_lt_of_le_of_pos
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosStrictMono α]
(ha : 1 < a)
(hb : 1 ≤ b)
(b0 : 0 < b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.one_lt_mul_of_le_of_lt_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosMono α]
(ha : 1 ≤ a)
(hb : 1 < b)
(b0 : 0 ≤ b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.one_lt_mul_of_lt_of_lt
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosStrictMono α]
(ha : 1 < a)
(hb : 1 < b)
(b0 : 0 < b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_mul_of_one_lt_of_lt_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(ha : 1 ≤ a)
(h : b < c)
(hc : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_of_mul_lt_of_one_le_of_nonneg_left
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : a * b < c)
(hle : 1 ≤ b)
(ha : 0 ≤ a)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_of_lt_mul_of_le_one_of_nonneg_left
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : a < b * c)
(hc : c ≤ 1)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
lt_of_lt_mul_of_le_one_of_nonneg_right
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(h : a < b * c)
(hb : b ≤ 1)
(hc : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_mul_of_one_le_of_le_of_nonneg
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(ha : 1 ≤ a)
(bc : b ≤ c)
(c0 : 0 ≤ c)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
Right.one_le_mul_of_le_of_le
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b : α}
[MulPosMono α]
(ha : 1 ≤ a)
(hb : 1 ≤ b)
(b0 : 0 ≤ b)
:
Assumes right covariance.
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_of_mul_le_of_one_le_of_nonneg_left
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : a * b ≤ c)
(hb : 1 ≤ b)
(ha : 0 ≤ a)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_of_le_mul_of_le_one_of_nonneg_left
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[PosMulMono α]
(h : a ≤ b * c)
(hc : c ≤ 1)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_of_mul_le_of_one_le_nonneg_right
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(h : a * b ≤ c)
(ha : 1 ≤ a)
(hb : 0 ≤ b)
:
@[deprecated "No replacement, use constituent lemmas from proof." (since := "2025-02-27")]
theorem
le_of_le_mul_of_le_one_of_nonneg_right
{α : Type u_1}
[MulOneClass α]
[Zero α]
[Preorder α]
{a b c : α}
[MulPosMono α]
(h : a ≤ b * c)
(hb : b ≤ 1)
(hc : 0 ≤ c)
:
@[deprecated "No replacement." (since := "2025-02-27")]
theorem
exists_square_le'
{α : Type u_1}
[MulOneClass α]
[Zero α]
[LinearOrder α]
{a : α}
[PosMulStrictMono α]
(a0 : 0 < a)
: