Documentation

Mathlib.Dynamics.BirkhoffSum.QuasiMeasurePreserving

Birkhoff sum and average for quasi measure preserving maps #

Given a map f and measure μ, under the assumption of QuasiMeasurePreserving f μ μ we prove:

theorem MeasureTheory.Measure.QuasiMeasurePreserving.birkhoffSum_ae_eq_of_ae_eq {α : Type u_1} {M : Type u_2} [MeasurableSpace α] [AddCommMonoid M] {f : αα} {μ : Measure α} {φ ψ : αM} (hf : QuasiMeasurePreserving f μ μ) ( : φ =ᵐ[μ] ψ) (n : ) :

If observables φ and ψ are μ-a.e. equal then the corresponding birkhoffSum are μ-a.e. equal.

theorem MeasureTheory.Measure.QuasiMeasurePreserving.birkhoffAverage_ae_eq_of_ae_eq {α : Type u_1} {M : Type u_2} [MeasurableSpace α] [AddCommMonoid M] {f : αα} {μ : Measure α} {φ ψ : αM} (R : Type u_3) [DivisionSemiring R] [Module R M] (hf : QuasiMeasurePreserving f μ μ) ( : φ =ᵐ[μ] ψ) (n : ) :

If observables φ and ψ are μ-a.e. equal then the corresponding birkhoffAverage are μ-a.e. equal.