Birkhoff sum and average for quasi measure preserving maps #
Given a map f
and measure μ
, under the assumption of QuasiMeasurePreserving f μ μ
we prove:
birkhoffSum_ae_eq_of_ae_eq
: if observablesφ
andψ
areμ
-a.e. equal then the correspondingbirkhoffSum f
areμ
-a.e. equal.birkhoffAverage_ae_eq_of_ae_eq
: if observablesφ
andψ
areμ
-a.e. equal then the correspondingbirkhoffAverage R f
areμ
-a.e. equal.
theorem
MeasureTheory.Measure.QuasiMeasurePreserving.birkhoffSum_ae_eq_of_ae_eq
{α : Type u_1}
{M : Type u_2}
[MeasurableSpace α]
[AddCommMonoid M]
{f : α → α}
{μ : Measure α}
{φ ψ : α → M}
(hf : QuasiMeasurePreserving f μ μ)
(hφ : φ =ᵐ[μ] ψ)
(n : ℕ)
:
If observables φ
and ψ
are μ
-a.e. equal then the corresponding birkhoffSum
are
μ
-a.e. equal.
theorem
MeasureTheory.Measure.QuasiMeasurePreserving.birkhoffAverage_ae_eq_of_ae_eq
{α : Type u_1}
{M : Type u_2}
[MeasurableSpace α]
[AddCommMonoid M]
{f : α → α}
{μ : Measure α}
{φ ψ : α → M}
(R : Type u_3)
[DivisionSemiring R]
[Module R M]
(hf : QuasiMeasurePreserving f μ μ)
(hφ : φ =ᵐ[μ] ψ)
(n : ℕ)
:
If observables φ
and ψ
are μ
-a.e. equal then the corresponding birkhoffAverage
are
μ
-a.e. equal.