Documentation

Mathlib.MeasureTheory.Measure.QuasiMeasurePreserving

Quasi Measure Preserving Functions #

A map f : α → β is said to be quasi measure preserving (a.k.a. non-singular) w.r.t. measures μa and μb if it is measurable and μb s = 0 implies μa (f ⁻¹' s) = 0. That last condition can also be written μa.map f ≪ μb (the map of μa by f is absolutely continuous with respect to μb).

Main definitions #

structure MeasureTheory.Measure.QuasiMeasurePreserving {α : Type u_1} {β : Type u_2} {mβ : MeasurableSpace β} {m0 : MeasurableSpace α} (f : αβ) (μa : MeasureTheory.Measure α := by volume_tac) (μb : MeasureTheory.Measure β := by volume_tac) :

A map f : α → β is said to be quasi measure preserving (a.k.a. non-singular) w.r.t. measures μa and μb if it is measurable and μb s = 0 implies μa (f ⁻¹' s) = 0.

Instances For
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.mono_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa μa' : MeasureTheory.Measure α} {μb : MeasureTheory.Measure β} {f : αβ} (h : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) (ha : μa'.AbsolutelyContinuous μa) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.mono_right {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : MeasureTheory.Measure α} {μb μb' : MeasureTheory.Measure β} {f : αβ} (h : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) (ha : μb.AbsolutelyContinuous μb') :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.mono {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa μa' : MeasureTheory.Measure α} {μb μb' : MeasureTheory.Measure β} {f : αβ} (ha : μa'.AbsolutelyContinuous μa) (hb : μb.AbsolutelyContinuous μb') (h : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.ae {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : MeasureTheory.Measure α} {μb : MeasureTheory.Measure β} {f : αβ} (h : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) {p : βProp} (hg : ∀ᵐ (x : β) ∂μb, p x) :
    ∀ᵐ (x : α) ∂μa, p (f x)
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq {α : Type u_1} {β : Type u_2} {δ : Type u_4} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : MeasureTheory.Measure α} {μb : MeasureTheory.Measure β} {f : αβ} (h : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) {g₁ g₂ : βδ} (hg : g₁ =ᵐ[μb] g₂) :
    g₁ f =ᵐ[μa] g₂ f
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : MeasureTheory.Measure α} {μb : MeasureTheory.Measure β} {f : αβ} (h : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) {s : Set β} (hs : μb s = 0) :
    μa (f ⁻¹' s) = 0
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_mono_ae {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : MeasureTheory.Measure α} {μb : MeasureTheory.Measure β} {f : αβ} {s t : Set β} (hf : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) (h : s ≤ᵐ[μb] t) :
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.preimage_ae_eq {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μa : MeasureTheory.Measure α} {μb : MeasureTheory.Measure β} {f : αβ} {s t : Set β} (hf : MeasureTheory.Measure.QuasiMeasurePreserving f μa μb) (h : s =ᵐ[μb] t) :
    f ⁻¹' s =ᵐ[μa] f ⁻¹' t

    The preimage of a null measurable set under a (quasi) measure preserving map is a null measurable set.

    theorem MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {e : α α} (he : MeasureTheory.Measure.QuasiMeasurePreserving (⇑e) μ μ) (he' : MeasureTheory.Measure.QuasiMeasurePreserving (⇑e.symm) μ μ) (k : ) (hs : e '' s =ᵐ[μ] s) :
    (e ^ k) '' s =ᵐ[μ] s

    For a quasi measure preserving self-map f, if a null measurable set s is a.e. invariant, then it is a.e. equal to a measurable invariant set.

    theorem MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq {G : Type u_5} {α : Type u_6} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {s t : Set α} {μ : MeasureTheory.Measure α} (g : G) (h_qmp : MeasureTheory.Measure.QuasiMeasurePreserving (fun (x : α) => g⁻¹ x) μ μ) (h_ae_eq : s =ᵐ[μ] t) :
    g s =ᵐ[μ] g t
    theorem MeasureTheory.Measure.QuasiMeasurePreserving.vadd_ae_eq_of_ae_eq {G : Type u_5} {α : Type u_6} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {s t : Set α} {μ : MeasureTheory.Measure α} (g : G) (h_qmp : MeasureTheory.Measure.QuasiMeasurePreserving (fun (x : α) => -g +ᵥ x) μ μ) (h_ae_eq : s =ᵐ[μ] t) :
    g +ᵥ s =ᵐ[μ] g +ᵥ t
    theorem MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G : Type u_5} {α : Type u_6} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (h_ae_disjoint : ∀ (g : G), g 1MeasureTheory.AEDisjoint μ (g s) s) (h_qmp : ∀ (g : G), MeasureTheory.Measure.QuasiMeasurePreserving (fun (x : α) => g x) μ μ) :
    theorem MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_zero {G : Type u_5} {α : Type u_6} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (h_ae_disjoint : ∀ (g : G), g 0MeasureTheory.AEDisjoint μ (g +ᵥ s) s) (h_qmp : ∀ (g : G), MeasureTheory.Measure.QuasiMeasurePreserving (fun (x : α) => g +ᵥ x) μ μ) :
    theorem MeasureTheory.NullMeasurableSet.mono_ac {α : Type u_1} {mα : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} {s : Set α} (h : MeasureTheory.NullMeasurableSet s μ) (hle : ν.AbsolutelyContinuous μ) :
    theorem MeasureTheory.AEDisjoint.preimage {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : αβ} {s t : Set β} (ht : MeasureTheory.AEDisjoint ν s t) (hf : MeasureTheory.Measure.QuasiMeasurePreserving f μ ν) :