Topological entropy of subsets: monotonicity, closure, union #
This file contains general results about the topological entropy of various subsets of the same
dynamical system (X, T)
. We prove that:
- the topological entropy
CoverEntropy T F
ofF
is monotone inF
: the larger the subset, the larger its entropy. - the topological entropy of a subset equals the entropy of its closure.
- the entropy of the union of two sets is the maximum of their entropies. We generalize the latter property to finite unions.
Implementation notes #
Most results are proved using only the definition of the topological entropy by covers. Some lemmas of general interest are also proved for nets.
TODO #
One may implement a notion of Hausdorff convergence for subsets using uniform spaces, and then prove the semicontinuity of the topological entropy. It would be a nice generalization of the lemmas on closures.
Tags #
closure, entropy, subset, union
Monotonicity of entropy as a function of the subset #
theorem
Dynamics.IsDynCoverOf.monotone_subset
{X : Type u_1}
{T : X → X}
{F G : Set X}
(F_G : F ⊆ G)
{U : Set (X × X)}
{n : ℕ}
{s : Set X}
(h : IsDynCoverOf T G U n s)
:
IsDynCoverOf T F U n s
theorem
Dynamics.IsDynNetIn.monotone_subset
{X : Type u_1}
{T : X → X}
{F G : Set X}
(F_G : F ⊆ G)
{U : Set (X × X)}
{n : ℕ}
{s : Set X}
(h : IsDynNetIn T F U n s)
:
IsDynNetIn T G U n s
theorem
Dynamics.coverMincard_monotone_subset
{X : Type u_1}
(T : X → X)
(U : Set (X × X))
(n : ℕ)
:
Monotone fun (F : Set X) => coverMincard T F U n
theorem
Dynamics.netMaxcard_monotone_subset
{X : Type u_1}
(T : X → X)
(U : Set (X × X))
(n : ℕ)
:
Monotone fun (F : Set X) => netMaxcard T F U n
theorem
Dynamics.coverEntropyInfEntourage_monotone
{X : Type u_1}
(T : X → X)
(U : Set (X × X))
:
Monotone fun (F : Set X) => coverEntropyInfEntourage T F U
theorem
Dynamics.coverEntropyEntourage_monotone
{X : Type u_1}
(T : X → X)
(U : Set (X × X))
:
Monotone fun (F : Set X) => coverEntropyEntourage T F U
theorem
Dynamics.netEntropyInfEntourage_monotone
{X : Type u_1}
(T : X → X)
(U : Set (X × X))
:
Monotone fun (F : Set X) => netEntropyInfEntourage T F U
theorem
Dynamics.netEntropyEntourage_monotone
{X : Type u_1}
(T : X → X)
(U : Set (X × X))
:
Monotone fun (F : Set X) => netEntropyEntourage T F U
theorem
Dynamics.coverEntropyInf_monotone
{X : Type u_1}
[UniformSpace X]
(T : X → X)
:
Monotone fun (F : Set X) => coverEntropyInf T F
theorem
Dynamics.coverEntropy_monotone
{X : Type u_1}
[UniformSpace X]
(T : X → X)
:
Monotone fun (F : Set X) => coverEntropy T F
Closure #
theorem
Dynamics.IsDynCoverOf.closure
{X : Type u_1}
[UniformSpace X]
{T : X → X}
(h : Continuous T)
{F : Set X}
{U V : Set (X × X)}
(V_uni : V ∈ uniformity X)
{n : ℕ}
{s : Set X}
(s_cover : IsDynCoverOf T F U n s)
:
IsDynCoverOf T (_root_.closure F) (compRel U V) n s
theorem
Dynamics.coverMincard_closure_le
{X : Type u_1}
[UniformSpace X]
{T : X → X}
(h : Continuous T)
(F : Set X)
(U : Set (X × X))
{V : Set (X × X)}
(V_uni : V ∈ uniformity X)
(n : ℕ)
:
theorem
Dynamics.coverEntropyInfEntourage_closure
{X : Type u_1}
[UniformSpace X]
{T : X → X}
(h : Continuous T)
(F : Set X)
(U : Set (X × X))
{V : Set (X × X)}
(V_uni : V ∈ uniformity X)
:
theorem
Dynamics.coverEntropyEntourage_closure
{X : Type u_1}
[UniformSpace X]
{T : X → X}
(h : Continuous T)
(F : Set X)
(U : Set (X × X))
{V : Set (X × X)}
(V_uni : V ∈ uniformity X)
:
theorem
Dynamics.coverEntropyInf_closure
{X : Type u_1}
[UniformSpace X]
{T : X → X}
(h : Continuous T)
{F : Set X}
:
theorem
Dynamics.coverEntropy_closure
{X : Type u_1}
[UniformSpace X]
{T : X → X}
(h : Continuous T)
{F : Set X}
:
Finite unions #
theorem
Dynamics.IsDynCoverOf.union
{X : Type u_1}
{T : X → X}
{F G : Set X}
{U : Set (X × X)}
{n : ℕ}
{s t : Set X}
(hs : IsDynCoverOf T F U n s)
(ht : IsDynCoverOf T G U n t)
:
IsDynCoverOf T (F ∪ G) U n (s ∪ t)
theorem
Dynamics.coverEntropyEntourage_union
{X : Type u_1}
{T : X → X}
{F G : Set X}
{U : Set (X × X)}
:
theorem
Dynamics.coverEntropyInf_iUnion_le
{X : Type u_1}
{ι : Type u_2}
[UniformSpace X]
(T : X → X)
(F : ι → Set X)
:
theorem
Dynamics.coverEntropy_iUnion_le
{X : Type u_1}
{ι : Type u_2}
[UniformSpace X]
(T : X → X)
(F : ι → Set X)
:
theorem
Dynamics.coverEntropyInf_biUnion_le
{X : Type u_1}
{ι : Type u_2}
[UniformSpace X]
(s : Set ι)
(T : X → X)
(F : ι → Set X)
:
theorem
Dynamics.coverEntropy_biUnion_le
{X : Type u_1}
{ι : Type u_2}
[UniformSpace X]
(s : Set ι)
(T : X → X)
(F : ι → Set X)
:
Topological entropy CoverEntropy T
as a SupBotHom
function of the subset.
Equations
- Dynamics.coverEntropy_supBotHom T = { toFun := Dynamics.coverEntropy T, map_sup' := ⋯, map_bot' := ⋯ }
Instances For
theorem
Dynamics.coverEntropy_iUnion_of_finite
{X : Type u_1}
{ι : Type u_2}
[UniformSpace X]
[Finite ι]
{T : X → X}
{F : ι → Set X}
:
theorem
Dynamics.coverEntropy_biUnion_finset
{X : Type u_1}
{ι : Type u_2}
[UniformSpace X]
{T : X → X}
{F : ι → Set X}
{s : Finset ι}
: