Documentation

Mathlib.Dynamics.TopologicalEntropy.Subset

Topological entropy of subsets: monotonicity, closure, union #

This file contains general results about the topological entropy of various subsets of the same dynamical system (X, T). We prove that:

Implementation notes #

Most results are proved using only the definition of the topological entropy by covers. Some lemmas of general interest are also proved for nets.

TODO #

One may implement a notion of Hausdorff convergence for subsets using uniform spaces, and then prove the semicontinuity of the topological entropy. It would be a nice generalization of the lemmas on closures.

Tags #

closure, entropy, subset, union

Monotonicity of entropy as a function of the subset #

theorem Dynamics.IsDynCoverOf.monotone_subset {X : Type u_1} {T : XX} {F G : Set X} (F_G : F G) {U : Set (X × X)} {n : } {s : Set X} (h : IsDynCoverOf T G U n s) :
IsDynCoverOf T F U n s
theorem Dynamics.IsDynNetIn.monotone_subset {X : Type u_1} {T : XX} {F G : Set X} (F_G : F G) {U : Set (X × X)} {n : } {s : Set X} (h : IsDynNetIn T F U n s) :
IsDynNetIn T G U n s
theorem Dynamics.coverMincard_monotone_subset {X : Type u_1} (T : XX) (U : Set (X × X)) (n : ) :
Monotone fun (F : Set X) => coverMincard T F U n
theorem Dynamics.netMaxcard_monotone_subset {X : Type u_1} (T : XX) (U : Set (X × X)) (n : ) :
Monotone fun (F : Set X) => netMaxcard T F U n
theorem Dynamics.coverEntropyInfEntourage_monotone {X : Type u_1} (T : XX) (U : Set (X × X)) :
theorem Dynamics.coverEntropyEntourage_monotone {X : Type u_1} (T : XX) (U : Set (X × X)) :
Monotone fun (F : Set X) => coverEntropyEntourage T F U
theorem Dynamics.netEntropyInfEntourage_monotone {X : Type u_1} (T : XX) (U : Set (X × X)) :
Monotone fun (F : Set X) => netEntropyInfEntourage T F U
theorem Dynamics.netEntropyEntourage_monotone {X : Type u_1} (T : XX) (U : Set (X × X)) :
Monotone fun (F : Set X) => netEntropyEntourage T F U
theorem Dynamics.coverEntropyInf_monotone {X : Type u_1} [UniformSpace X] (T : XX) :
Monotone fun (F : Set X) => coverEntropyInf T F
theorem Dynamics.coverEntropy_monotone {X : Type u_1} [UniformSpace X] (T : XX) :
Monotone fun (F : Set X) => coverEntropy T F

Closure #

theorem Dynamics.IsDynCoverOf.closure {X : Type u_1} [UniformSpace X] {T : XX} (h : Continuous T) {F : Set X} {U V : Set (X × X)} (V_uni : V uniformity X) {n : } {s : Set X} (s_cover : IsDynCoverOf T F U n s) :
theorem Dynamics.coverMincard_closure_le {X : Type u_1} [UniformSpace X] {T : XX} (h : Continuous T) (F : Set X) (U : Set (X × X)) {V : Set (X × X)} (V_uni : V uniformity X) (n : ) :
theorem Dynamics.coverEntropyInfEntourage_closure {X : Type u_1} [UniformSpace X] {T : XX} (h : Continuous T) (F : Set X) (U : Set (X × X)) {V : Set (X × X)} (V_uni : V uniformity X) :
theorem Dynamics.coverEntropyEntourage_closure {X : Type u_1} [UniformSpace X] {T : XX} (h : Continuous T) (F : Set X) (U : Set (X × X)) {V : Set (X × X)} (V_uni : V uniformity X) :
theorem Dynamics.coverEntropyInf_closure {X : Type u_1} [UniformSpace X] {T : XX} (h : Continuous T) {F : Set X} :
theorem Dynamics.coverEntropy_closure {X : Type u_1} [UniformSpace X] {T : XX} (h : Continuous T) {F : Set X} :

Finite unions #

theorem Dynamics.IsDynCoverOf.union {X : Type u_1} {T : XX} {F G : Set X} {U : Set (X × X)} {n : } {s t : Set X} (hs : IsDynCoverOf T F U n s) (ht : IsDynCoverOf T G U n t) :
IsDynCoverOf T (F G) U n (s t)
theorem Dynamics.coverMincard_union_le {X : Type u_1} (T : XX) (F G : Set X) (U : Set (X × X)) (n : ) :
coverMincard T (F G) U n coverMincard T F U n + coverMincard T G U n
theorem Dynamics.coverEntropyEntourage_union {X : Type u_1} {T : XX} {F G : Set X} {U : Set (X × X)} :
theorem Dynamics.coverEntropy_union {X : Type u_1} [UniformSpace X] {T : XX} {F G : Set X} :
theorem Dynamics.coverEntropyInf_iUnion_le {X : Type u_1} {ι : Type u_2} [UniformSpace X] (T : XX) (F : ιSet X) :
⨆ (i : ι), coverEntropyInf T (F i) coverEntropyInf T (⋃ (i : ι), F i)
theorem Dynamics.coverEntropy_iUnion_le {X : Type u_1} {ι : Type u_2} [UniformSpace X] (T : XX) (F : ιSet X) :
⨆ (i : ι), coverEntropy T (F i) coverEntropy T (⋃ (i : ι), F i)
theorem Dynamics.coverEntropyInf_biUnion_le {X : Type u_1} {ι : Type u_2} [UniformSpace X] (s : Set ι) (T : XX) (F : ιSet X) :
is, coverEntropyInf T (F i) coverEntropyInf T (⋃ is, F i)
theorem Dynamics.coverEntropy_biUnion_le {X : Type u_1} {ι : Type u_2} [UniformSpace X] (s : Set ι) (T : XX) (F : ιSet X) :
is, coverEntropy T (F i) coverEntropy T (⋃ is, F i)
noncomputable def Dynamics.coverEntropy_supBotHom {X : Type u_1} [UniformSpace X] (T : XX) :

Topological entropy CoverEntropy T as a SupBotHom function of the subset.

Equations
Instances For
    theorem Dynamics.coverEntropy_iUnion_of_finite {X : Type u_1} {ι : Type u_2} [UniformSpace X] [Finite ι] {T : XX} {F : ιSet X} :
    coverEntropy T (⋃ (i : ι), F i) = ⨆ (i : ι), coverEntropy T (F i)
    theorem Dynamics.coverEntropy_biUnion_finset {X : Type u_1} {ι : Type u_2} [UniformSpace X] {T : XX} {F : ιSet X} {s : Finset ι} :
    coverEntropy T (⋃ is, F i) = is, coverEntropy T (F i)