Documentation

Mathlib.FieldTheory.Galois.Abelian

Abelian extensions #

In this file, we define the typeclass of abelian extensions and provide some basic API.

class IsAbelianGalois (K : Type u_4) (L : Type u_5) [Field K] [Field L] [Algebra K L] extends IsGalois K L, IsMulCommutative Gal(L/K) :

The class of abelian extensions, defined as galois extensions whose galois group is commutative.

Instances
    theorem IsAbelianGalois.tower_bot (K : Type u_1) (L : Type u_2) (M : Type u_3) [Field K] [Field L] [Algebra K L] [Field M] [Algebra K M] [Algebra L M] [IsScalarTower K L M] [IsAbelianGalois K M] :
    theorem IsAbelianGalois.tower_top (K : Type u_1) (L : Type u_2) (M : Type u_3) [Field K] [Field L] [Algebra K L] [Field M] [Algebra K M] [Algebra L M] [IsScalarTower K L M] [IsAbelianGalois K M] :
    theorem IsAbelianGalois.of_algHom {K : Type u_1} {L : Type u_2} {M : Type u_3} [Field K] [Field L] [Algebra K L] [Field M] [Algebra K M] (f : L →ₐ[K] M) [IsAbelianGalois K M] :
    theorem IsAbelianGalois.of_isCyclic (K : Type u_1) (L : Type u_2) [Field K] [Field L] [Algebra K L] [IsGalois K L] [IsCyclic Gal(L/K)] :