Angles and conformal maps #
This file proves that conformal maps preserve angles.
theorem
InnerProductGeometry.IsConformalMap.preserves_angle
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f' : E →L[ℝ] F}
(h : IsConformalMap f')
(u v : E)
:
InnerProductGeometry.angle (f' u) (f' v) = InnerProductGeometry.angle u v
theorem
InnerProductGeometry.ConformalAt.preserves_angle
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
{f' : E →L[ℝ] F}
(h : HasFDerivAt f f' x)
(H : ConformalAt f x)
(u v : E)
:
InnerProductGeometry.angle (f' u) (f' v) = InnerProductGeometry.angle u v
If a real differentiable map f
is conformal at a point x
,
then it preserves the angles at that point.