Documentation

Mathlib.Geometry.Euclidean.Simplex

Simplices in Euclidean spaces. #

This file defines properties of simplices in a Euclidean space.

Main definitions #

theorem Affine.Simplex.Equilateral.angle_eq_pi_div_three {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } {s : Simplex P n} (he : s.Equilateral) {i₁ i₂ i₃ : Fin (n + 1)} (h₁₂ : i₁ i₂) (h₁₃ : i₁ i₃) (h₂₃ : i₂ i₃) :
EuclideanGeometry.angle (s.points i₁) (s.points i₂) (s.points i₃) = Real.pi / 3

The property of all angles of a simplex being acute.

Equations
Instances For
    @[simp]
    theorem Affine.Simplex.dist_point_centroid {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } [NeZero n] (s : Simplex P n) (i : Fin (n + 1)) :

    The distance from a vertex to the centroid equals n times the distance from the centroid to the corresponding faceOppositeCentroid.

    The distance from a vertex to its faceOppositeCentroid equals (n + 1) times the distance from the centroid to that faceOppositeCentroid.

    In a triangle, the distance from a vertex to the centroid equals twice the distance from the centroid to the faceOppositeCentroid.

    In a triangle, the distance from a vertex to the faceOppositeCentroid equals three times the distance from the centroid to the faceOppositeCentroid.