Documentation

Mathlib.Geometry.Group.Growth.QuotientInter

Growth in the quotient and intersection with a subgroup #

For a group G and a subgroup H ≤ G, this file upper and lower bounds the growth of a finset by its growth in H and G ⧸ H.

theorem Finset.card_pow_quotient_mul_pow_inter_subgroup_le {G : Type u_1} [Group G] [DecidableEq G] {H : Subgroup G} [DecidablePred fun (x : G) => x H] [H.Normal] {A : Finset G} {m n : } :
(image (⇑(QuotientGroup.mk' H)) (A ^ m)).card * (filter (fun (x : G) => x H) (A ^ n)).card (A ^ (m + n)).card
theorem Finset.card_nsmul_quotient_add_nsmul_inter_addSubgroup_le {G : Type u_1} [AddGroup G] [DecidableEq G] {H : AddSubgroup G} [DecidablePred fun (x : G) => x H] [H.Normal] {A : Finset G} {m n : } :
(image (⇑(QuotientAddGroup.mk' H)) (m A)).card * (filter (fun (x : G) => x H) (n A)).card ((m + n) A).card
theorem Finset.le_card_quotient_mul_sq_inter_subgroup {G : Type u_1} [Group G] [DecidableEq G] {H : Subgroup G} [DecidablePred fun (x : G) => x H] [H.Normal] {A : Finset G} (hAsymm : A⁻¹ = A) :
A.card (image (⇑(QuotientGroup.mk' H)) A).card * (filter (fun (x : G) => x H) (A ^ 2)).card
theorem Finset.le_card_quotient_add_sq_inter_addSubgroup {G : Type u_1} [AddGroup G] [DecidableEq G] {H : AddSubgroup G} [DecidablePred fun (x : G) => x H] [H.Normal] {A : Finset G} (hAsymm : -A = A) :
A.card (image (⇑(QuotientAddGroup.mk' H)) A).card * (filter (fun (x : G) => x H) (2 A)).card