Growth in the quotient and intersection with a subgroup #
For a group G
and a subgroup H ≤ G
, this file upper and lower bounds the growth of a finset by
its growth in H
and G ⧸ H
.
theorem
Finset.card_pow_quotient_mul_pow_inter_subgroup_le
{G : Type u_1}
[Group G]
[DecidableEq G]
{H : Subgroup G}
[DecidablePred fun (x : G) => x ∈ H]
[H.Normal]
{A : Finset G}
{m n : ℕ}
:
theorem
Finset.card_nsmul_quotient_add_nsmul_inter_addSubgroup_le
{G : Type u_1}
[AddGroup G]
[DecidableEq G]
{H : AddSubgroup G}
[DecidablePred fun (x : G) => x ∈ H]
[H.Normal]
{A : Finset G}
{m n : ℕ}
:
theorem
Finset.le_card_quotient_mul_sq_inter_subgroup
{G : Type u_1}
[Group G]
[DecidableEq G]
{H : Subgroup G}
[DecidablePred fun (x : G) => x ∈ H]
[H.Normal]
{A : Finset G}
(hAsymm : A⁻¹ = A)
:
theorem
Finset.le_card_quotient_add_sq_inter_addSubgroup
{G : Type u_1}
[AddGroup G]
[DecidableEq G]
{H : AddSubgroup G}
[DecidablePred fun (x : G) => x ∈ H]
[H.Normal]
{A : Finset G}
(hAsymm : -A = A)
: