Documentation

Mathlib.Geometry.Manifold.Algebra.Monoid

C^n monoid #

A C^n monoid is a monoid that is also a C^n manifold, in which multiplication is a C^n map of the product manifold G Γ— G into G.

In this file we define the basic structures to talk about C^n monoids: ContMDiffMul and its additive counterpart ContMDiffAdd. These structures are general enough to also talk about C^n semigroups.

class ContMDiffAdd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) (G : Type u_4) [Add G] [TopologicalSpace G] [ChartedSpace H G] extends IsManifold I n G :

Basic hypothesis to talk about a C^n (Lie) additive monoid or a C^n additive semigroup. A C^n additive monoid over G, for example, is obtained by requiring both the instances AddMonoid G and ContMDiffAdd I n G.

Instances
    @[deprecated ContMDiffAdd (since := "2025-01-09")]
    def SmoothAdd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) (G : Type u_4) [Add G] [TopologicalSpace G] [ChartedSpace H G] :

    Alias of ContMDiffAdd.


    Basic hypothesis to talk about a C^n (Lie) additive monoid or a C^n additive semigroup. A C^n additive monoid over G, for example, is obtained by requiring both the instances AddMonoid G and ContMDiffAdd I n G.

    Equations
    Instances For
      class ContMDiffMul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) (G : Type u_4) [Mul G] [TopologicalSpace G] [ChartedSpace H G] extends IsManifold I n G :

      Basic hypothesis to talk about a C^n (Lie) monoid or a C^n semigroup. A C^n monoid over G, for example, is obtained by requiring both the instances Monoid G and ContMDiffMul I n G.

      Instances
        @[deprecated ContMDiffMul (since := "2025-01-09")]
        def SmoothMul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) (G : Type u_4) [Mul G] [TopologicalSpace G] [ChartedSpace H G] :

        Alias of ContMDiffMul.


        Basic hypothesis to talk about a C^n (Lie) monoid or a C^n semigroup. A C^n monoid over G, for example, is obtained by requiring both the instances Monoid G and ContMDiffMul I n G.

        Equations
        Instances For
          theorem ContMDiffMul.of_le {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {m n : WithTop β„•βˆž} (hmn : m ≀ n) [h : ContMDiffMul I n G] :
          theorem ContMDiffAdd.of_le {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {m n : WithTop β„•βˆž} (hmn : m ≀ n) [h : ContMDiffAdd I n G] :
          instance instContMDiffMulOfSomeENatTopOfLEInfty {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop β„•βˆž} [ContMDiffMul I (β†‘βŠ€) G] [h : ENat.LEInfty a] :
          instance instContMDiffAddOfSomeENatTopOfLEInfty {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop β„•βˆž} [ContMDiffAdd I (β†‘βŠ€) G] [h : ENat.LEInfty a] :
          instance instContMDiffMulOfTopWithTopENat {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop β„•βˆž} [ContMDiffMul I ⊀ G] :
          instance instContMDiffAddOfTopWithTopENat {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop β„•βˆž} [ContMDiffAdd I ⊀ G] :
          instance instContMDiffMulOfNatWithTopENatOfContinuousMul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContinuousMul G] :
          instance instContMDiffAddOfNatWithTopENatOfContinuousAdd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContinuousAdd G] :
          instance instContMDiffMulOfNatWithTopENat {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 2 G] :
          instance instContMDiffAddOfNatWithTopENat {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 2 G] :
          theorem contMDiff_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] :
          ContMDiff (I.prod I) I n fun (p : G Γ— G) => p.1 * p.2
          theorem contMDiff_add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] :
          ContMDiff (I.prod I) I n fun (p : G Γ— G) => p.1 + p.2
          @[deprecated contMDiff_mul (since := "2024-11-20")]
          theorem smooth_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] :
          ContMDiff (I.prod I) I n fun (p : G Γ— G) => p.1 * p.2

          Alias of contMDiff_mul.

          @[deprecated contMDiff_add (since := "2024-11-20")]
          theorem smooth_add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] :
          ContMDiff (I.prod I) I n fun (p : G Γ— G) => p.1 + p.2

          Alias of contMDiff_add.

          theorem continuousMul_of_contMDiffMul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] :

          If the multiplication is C^n, then it is continuous. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures].

          theorem continuousAdd_of_contMDiffAdd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] :

          If the addition is C^n, then it is continuous. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures].

          @[deprecated continuousMul_of_contMDiffMul (since := "2025-01-09")]
          theorem continuousMul_of_smooth {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) (n : WithTop β„•βˆž) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] :

          Alias of continuousMul_of_contMDiffMul.


          If the multiplication is C^n, then it is continuous. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures].

          theorem ContMDiffWithinAt.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} {s : Set M} {x : M} (hf : ContMDiffWithinAt I' I n f s x) (hg : ContMDiffWithinAt I' I n g s x) :
          ContMDiffWithinAt I' I n (f * g) s x
          theorem ContMDiffWithinAt.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} {s : Set M} {x : M} (hf : ContMDiffWithinAt I' I n f s x) (hg : ContMDiffWithinAt I' I n g s x) :
          ContMDiffWithinAt I' I n (f + g) s x
          theorem ContMDiffAt.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} {x : M} (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
          ContMDiffAt I' I n (f * g) x
          theorem ContMDiffAt.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} {x : M} (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
          ContMDiffAt I' I n (f + g) x
          theorem ContMDiffOn.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} {s : Set M} (hf : ContMDiffOn I' I n f s) (hg : ContMDiffOn I' I n g s) :
          ContMDiffOn I' I n (f * g) s
          theorem ContMDiffOn.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} {s : Set M} (hf : ContMDiffOn I' I n f s) (hg : ContMDiffOn I' I n g s) :
          ContMDiffOn I' I n (f + g) s
          theorem ContMDiff.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} (hf : ContMDiff I' I n f) (hg : ContMDiff I' I n g) :
          ContMDiff I' I n (f * g)
          theorem ContMDiff.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} (hf : ContMDiff I' I n f) (hg : ContMDiff I' I n g) :
          ContMDiff I' I n (f + g)
          @[deprecated ContMDiffWithinAt.mul (since := "2024-11-21")]
          theorem SmoothWithinAt.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} {s : Set M} {x : M} (hf : ContMDiffWithinAt I' I n f s x) (hg : ContMDiffWithinAt I' I n g s x) :
          ContMDiffWithinAt I' I n (f * g) s x

          Alias of ContMDiffWithinAt.mul.

          @[deprecated ContMDiffAt.mul (since := "2024-11-21")]
          theorem SmoothAt.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} {x : M} (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
          ContMDiffAt I' I n (f * g) x

          Alias of ContMDiffAt.mul.

          @[deprecated ContMDiffOn.mul (since := "2024-11-21")]
          theorem SmoothOn.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} {s : Set M} (hf : ContMDiffOn I' I n f s) (hg : ContMDiffOn I' I n g s) :
          ContMDiffOn I' I n (f * g) s

          Alias of ContMDiffOn.mul.

          @[deprecated ContMDiff.mul (since := "2024-11-21")]
          theorem Smooth.mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : M β†’ G} (hf : ContMDiff I' I n f) (hg : ContMDiff I' I n g) :
          ContMDiff I' I n (f * g)

          Alias of ContMDiff.mul.

          @[deprecated ContMDiffWithinAt.add (since := "2024-11-21")]
          theorem SmoothWithinAt.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} {s : Set M} {x : M} (hf : ContMDiffWithinAt I' I n f s x) (hg : ContMDiffWithinAt I' I n g s x) :
          ContMDiffWithinAt I' I n (f + g) s x

          Alias of ContMDiffWithinAt.add.

          @[deprecated ContMDiffAt.add (since := "2024-11-21")]
          theorem SmoothAt.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} {x : M} (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
          ContMDiffAt I' I n (f + g) x

          Alias of ContMDiffAt.add.

          @[deprecated ContMDiffOn.add (since := "2024-11-21")]
          theorem SmoothOn.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} {s : Set M} (hf : ContMDiffOn I' I n f s) (hg : ContMDiffOn I' I n g s) :
          ContMDiffOn I' I n (f + g) s

          Alias of ContMDiffOn.add.

          @[deprecated ContMDiff.add (since := "2024-11-21")]
          theorem Smooth.add {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : M β†’ G} (hf : ContMDiff I' I n f) (hg : ContMDiff I' I n g) :
          ContMDiff I' I n (f + g)

          Alias of ContMDiff.add.

          theorem contMDiff_mul_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a : G} :
          ContMDiff I I n fun (x : G) => a * x
          theorem contMDiff_add_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a : G} :
          ContMDiff I I n fun (x : G) => a + x
          @[deprecated contMDiff_mul_left (since := "2024-11-21")]
          theorem smooth_mul_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a : G} :
          ContMDiff I I n fun (x : G) => a * x

          Alias of contMDiff_mul_left.

          @[deprecated contMDiff_add_left (since := "2024-11-21")]
          theorem smooth_add_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a : G} :
          ContMDiff I I n fun (x : G) => a + x

          Alias of contMDiff_add_left.

          theorem contMDiffAt_mul_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a b : G} :
          ContMDiffAt I I n (fun (x : G) => a * x) b
          theorem contMDiffAt_add_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a b : G} :
          ContMDiffAt I I n (fun (x : G) => a + x) b
          theorem contMDiff_mul_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a : G} :
          ContMDiff I I n fun (x : G) => x * a
          theorem contMDiff_add_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a : G} :
          ContMDiff I I n fun (x : G) => x + a
          @[deprecated contMDiff_mul_right (since := "2024-11-21")]
          theorem smooth_mul_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a : G} :
          ContMDiff I I n fun (x : G) => x * a

          Alias of contMDiff_mul_right.

          @[deprecated contMDiff_add_right (since := "2024-11-21")]
          theorem smooth_add_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a : G} :
          ContMDiff I I n fun (x : G) => x + a

          Alias of contMDiff_add_right.

          theorem contMDiffAt_mul_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a b : G} :
          ContMDiffAt I I n (fun (x : G) => x * a) b
          theorem contMDiffAt_add_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {n : WithTop β„•βˆž} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a b : G} :
          ContMDiffAt I I n (fun (x : G) => x + a) b
          theorem mdifferentiable_mul_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a : G} :
          MDifferentiable I I fun (x : G) => a * x
          theorem mdifferentiable_add_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a : G} :
          MDifferentiable I I fun (x : G) => a + x
          theorem mdifferentiableAt_mul_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a b : G} :
          MDifferentiableAt I I (fun (x : G) => a * x) b
          theorem mdifferentiableAt_add_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a b : G} :
          MDifferentiableAt I I (fun (x : G) => a + x) b
          theorem mdifferentiable_mul_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a : G} :
          MDifferentiable I I fun (x : G) => x * a
          theorem mdifferentiable_add_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a : G} :
          MDifferentiable I I fun (x : G) => x + a
          theorem mdifferentiableAt_mul_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a b : G} :
          MDifferentiableAt I I (fun (x : G) => x * a) b
          theorem mdifferentiableAt_add_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a b : G} :
          MDifferentiableAt I I (fun (x : G) => x + a) b
          def smoothLeftMul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g : G) [ContMDiffMul I (β†‘βŠ€) G] :
          ContMDiffMap I I G G β†‘βŠ€

          Left multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑳. Lemmas involving smoothLeftMul with the notation 𝑳 usually use L instead of 𝑳 in the names.

          Equations
          Instances For
            def smoothRightMul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g : G) [ContMDiffMul I (β†‘βŠ€) G] :
            ContMDiffMap I I G G β†‘βŠ€

            Right multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑹. Lemmas involving smoothRightMul with the notation 𝑹 usually use R instead of 𝑹 in the names.

            Equations
            Instances For

              Left multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑳. Lemmas involving smoothLeftMul with the notation 𝑳 usually use L instead of 𝑳 in the names.

              Equations
              Instances For

                Right multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑹. Lemmas involving smoothRightMul with the notation 𝑹 usually use R instead of 𝑹 in the names.

                Equations
                Instances For
                  @[simp]
                  theorem L_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g h : G) [ContMDiffMul I (β†‘βŠ€) G] :
                  (smoothLeftMul I g) h = g * h
                  @[simp]
                  theorem R_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g h : G) [ContMDiffMul I (β†‘βŠ€) G] :
                  (smoothRightMul I g) h = h * g
                  @[simp]
                  theorem L_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G : Type u_8} [Semigroup G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I (β†‘βŠ€) G] (g h : G) :
                  smoothLeftMul I (g * h) = (smoothLeftMul I g).comp (smoothLeftMul I h)
                  @[simp]
                  theorem R_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G : Type u_8} [Semigroup G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I (β†‘βŠ€) G] (g h : G) :
                  theorem smoothLeftMul_one {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G' : Type u_8} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H G'] [ContMDiffMul I (β†‘βŠ€) G'] (g' : G') :
                  (smoothLeftMul I g') 1 = g'
                  theorem smoothRightMul_one {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] (I : ModelWithCorners π•œ E H) {G' : Type u_8} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H G'] [ContMDiffMul I (β†‘βŠ€) G'] (g' : G') :
                  (smoothRightMul I g') 1 = g'
                  instance ContMDiffMul.prod {n : WithTop β„•βˆž} {π•œ : Type u_8} [NontriviallyNormedField π•œ] {E : Type u_9} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_10} [TopologicalSpace H] (I : ModelWithCorners π•œ E H) (G : Type u_11) [TopologicalSpace G] [ChartedSpace H G] [Mul G] [ContMDiffMul I n G] {E' : Type u_12} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_13} [TopologicalSpace H'] (I' : ModelWithCorners π•œ E' H') (G' : Type u_14) [TopologicalSpace G'] [ChartedSpace H' G'] [Mul G'] [ContMDiffMul I' n G'] :
                  ContMDiffMul (I.prod I') n (G Γ— G')
                  instance ContMDiffAdd.sum {n : WithTop β„•βˆž} {π•œ : Type u_8} [NontriviallyNormedField π•œ] {E : Type u_9} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_10} [TopologicalSpace H] (I : ModelWithCorners π•œ E H) (G : Type u_11) [TopologicalSpace G] [ChartedSpace H G] [Add G] [ContMDiffAdd I n G] {E' : Type u_12} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_13} [TopologicalSpace H'] (I' : ModelWithCorners π•œ E' H') (G' : Type u_14) [TopologicalSpace G'] [ChartedSpace H' G'] [Add G'] [ContMDiffAdd I' n G'] :
                  ContMDiffAdd (I.prod I') n (G Γ— G')
                  theorem contMDiff_pow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] (i : β„•) :
                  ContMDiff I I n fun (a : G) => a ^ i
                  theorem contMDiff_nsmul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] (i : β„•) :
                  ContMDiff I I n fun (a : G) => i β€’ a
                  @[deprecated contMDiff_pow (since := "2024-11-21")]
                  theorem smooth_pow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] (i : β„•) :
                  ContMDiff I I n fun (a : G) => a ^ i

                  Alias of contMDiff_pow.

                  @[deprecated contMDiff_nsmul (since := "2024-11-21")]
                  theorem smooth_nsmul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] (i : β„•) :
                  ContMDiff I I n fun (a : G) => i β€’ a

                  Alias of contMDiff_nsmul.

                  structure ContMDiffAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] (I : ModelWithCorners π•œ E H) (I' : ModelWithCorners π•œ E' H') (n : WithTop β„•βˆž) (G : Type u_8) [TopologicalSpace G] [ChartedSpace H G] [AddMonoid G] (G' : Type u_9) [TopologicalSpace G'] [ChartedSpace H' G'] [AddMonoid G'] extends G β†’+ G' :
                  Type (max u_8 u_9)

                  Morphism of additive C^n monoids.

                  • toFun : G β†’ G'
                  • map_zero' : (↑self.toAddMonoidHom).toFun 0 = 0
                  • map_add' (x y : G) : (↑self.toAddMonoidHom).toFun (x + y) = (↑self.toAddMonoidHom).toFun x + (↑self.toAddMonoidHom).toFun y
                  • contMDiff_toFun : ContMDiff I I' n (↑self.toAddMonoidHom).toFun
                  Instances For
                    @[deprecated ContMDiffAddMonoidMorphism (since := "2025-01-09")]
                    def SmoothAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] (I : ModelWithCorners π•œ E H) (I' : ModelWithCorners π•œ E' H') (n : WithTop β„•βˆž) (G : Type u_8) [TopologicalSpace G] [ChartedSpace H G] [AddMonoid G] (G' : Type u_9) [TopologicalSpace G'] [ChartedSpace H' G'] [AddMonoid G'] :
                    Type (max u_8 u_9)

                    Alias of ContMDiffAddMonoidMorphism.


                    Morphism of additive C^n monoids.

                    Equations
                    Instances For
                      structure ContMDiffMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] (I : ModelWithCorners π•œ E H) (I' : ModelWithCorners π•œ E' H') (n : WithTop β„•βˆž) (G : Type u_8) [TopologicalSpace G] [ChartedSpace H G] [Monoid G] (G' : Type u_9) [TopologicalSpace G'] [ChartedSpace H' G'] [Monoid G'] extends G β†’* G' :
                      Type (max u_8 u_9)

                      Morphism of C^n monoids.

                      • toFun : G β†’ G'
                      • map_one' : (↑self.toMonoidHom).toFun 1 = 1
                      • map_mul' (x y : G) : (↑self.toMonoidHom).toFun (x * y) = (↑self.toMonoidHom).toFun x * (↑self.toMonoidHom).toFun y
                      • contMDiff_toFun : ContMDiff I I' n (↑self.toMonoidHom).toFun
                      Instances For
                        @[deprecated ContMDiffMonoidMorphism (since := "2025-01-09")]
                        def SmoothMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] (I : ModelWithCorners π•œ E H) (I' : ModelWithCorners π•œ E' H') (n : WithTop β„•βˆž) (G : Type u_8) [TopologicalSpace G] [ChartedSpace H G] [Monoid G] (G' : Type u_9) [TopologicalSpace G'] [ChartedSpace H' G'] [Monoid G'] :
                        Type (max u_8 u_9)

                        Alias of ContMDiffMonoidMorphism.


                        Morphism of C^n monoids.

                        Equations
                        Instances For
                          instance instOneContMDiffMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          Equations
                          instance instZeroContMDiffAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          Equations
                          instance instInhabitedContMDiffMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          Equations
                          instance instInhabitedContMDiffAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          Equations
                          instance instFunLikeContMDiffMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          FunLike (ContMDiffMonoidMorphism I I' n G G') G G'
                          Equations
                          instance instFunLikeContMDiffAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          Equations
                          instance instMonoidHomClassContMDiffMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          instance instAddMonoidHomClassContMDiffAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          instance instContinuousMapClassContMDiffMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                          instance instContinuousMapClassContMDiffAddMonoidMorphism {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {I' : ModelWithCorners π•œ E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :

                          Differentiability of finite point-wise sums and products #

                          Finite point-wise products (resp. sums) of C^n functions M β†’ G (at x/on s) into a commutative monoid G are C^n at x/on s.

                          theorem ContMDiffWithinAt.prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {xβ‚€ : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s xβ‚€) :
                          ContMDiffWithinAt I' I n (fun (x : M) => ∏ i ∈ t, f i x) s xβ‚€
                          theorem ContMDiffWithinAt.sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {xβ‚€ : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s xβ‚€) :
                          ContMDiffWithinAt I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) s xβ‚€
                          theorem contMDiffWithinAt_finprod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) {xβ‚€ : M} (h : βˆ€ (i : ΞΉ), ContMDiffWithinAt I' I n (f i) s xβ‚€) :
                          ContMDiffWithinAt I' I n (fun (x : M) => ∏ᢠ (i : ΞΉ), f i x) s xβ‚€
                          theorem contMDiffWithinAt_finsum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) {xβ‚€ : M} (h : βˆ€ (i : ΞΉ), ContMDiffWithinAt I' I n (f i) s xβ‚€) :
                          ContMDiffWithinAt I' I n (fun (x : M) => βˆ‘αΆ  (i : ΞΉ), f i x) s xβ‚€
                          theorem contMDiffWithinAt_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (∏ i ∈ t, f i) s x
                          theorem contMDiffWithinAt_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (βˆ‘ i ∈ t, f i) s x
                          theorem contMDiffWithinAt_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => ∏ i ∈ t, f i x) s x
                          theorem contMDiffWithinAt_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) s x
                          theorem ContMDiffAt.prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {xβ‚€ : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) xβ‚€) :
                          ContMDiffAt I' I n (fun (x : M) => ∏ i ∈ t, f i x) xβ‚€
                          theorem ContMDiffAt.sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {xβ‚€ : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) xβ‚€) :
                          ContMDiffAt I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) xβ‚€
                          theorem contMDiffAt_finprod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {xβ‚€ : M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) (h : βˆ€ (i : ΞΉ), ContMDiffAt I' I n (f i) xβ‚€) :
                          ContMDiffAt I' I n (fun (x : M) => ∏ᢠ (i : ΞΉ), f i x) xβ‚€
                          theorem contMDiffAt_finsum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {xβ‚€ : M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) (h : βˆ€ (i : ΞΉ), ContMDiffAt I' I n (f i) xβ‚€) :
                          ContMDiffAt I' I n (fun (x : M) => βˆ‘αΆ  (i : ΞΉ), f i x) xβ‚€
                          theorem contMDiffAt_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (∏ i ∈ t, f i) x
                          theorem contMDiffAt_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (βˆ‘ i ∈ t, f i) x
                          theorem contMDiffAt_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (fun (x : M) => ∏ i ∈ t, f i x) x
                          theorem contMDiffAt_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) x
                          theorem contMDiffOn_finprod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) (h : βˆ€ (i : ΞΉ), ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (fun (x : M) => ∏ᢠ (i : ι), f i x) s
                          theorem contMDiffOn_finsum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) (h : βˆ€ (i : ΞΉ), ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (fun (x : M) => βˆ‘αΆ  (i : ΞΉ), f i x) s
                          theorem contMDiffOn_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (∏ i ∈ t, f i) s
                          theorem contMDiffOn_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (βˆ‘ i ∈ t, f i) s
                          theorem contMDiffOn_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (fun (x : M) => ∏ i ∈ t, f i x) s
                          theorem contMDiffOn_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) s
                          theorem ContMDiff.prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ i ∈ t, f i x
                          theorem ContMDiff.sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘ i ∈ t, f i x
                          theorem contMDiff_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n (∏ i ∈ t, f i)
                          theorem contMDiff_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n (βˆ‘ i ∈ t, f i)
                          theorem contMDiff_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ i ∈ t, f i x
                          theorem contMDiff_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘ i ∈ t, f i x
                          theorem contMDiff_finprod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} (h : βˆ€ (i : ΞΉ), ContMDiff I' I n (f i)) (hfin : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ᢠ (i : ι), f i x
                          theorem contMDiff_finsum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} (h : βˆ€ (i : ΞΉ), ContMDiff I' I n (f i)) (hfin : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘αΆ  (i : ΞΉ), f i x
                          theorem contMDiff_finprod_cond {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} {p : ΞΉ β†’ Prop} (hc : βˆ€ (i : ΞΉ), p i β†’ ContMDiff I' I n (f i)) (hf : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ᢠ (i : ι) (_ : p i), f i x
                          theorem contMDiff_finsum_cond {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} {p : ΞΉ β†’ Prop} (hc : βˆ€ (i : ΞΉ), p i β†’ ContMDiff I' I n (f i)) (hf : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘αΆ  (i : ΞΉ) (_ : p i), f i x
                          @[deprecated contMDiffAt_finprod (since := "2024-11-21")]
                          theorem smoothAt_finprod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {xβ‚€ : M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) (h : βˆ€ (i : ΞΉ), ContMDiffAt I' I n (f i) xβ‚€) :
                          ContMDiffAt I' I n (fun (x : M) => ∏ᢠ (i : ΞΉ), f i x) xβ‚€

                          Alias of contMDiffAt_finprod.

                          @[deprecated contMDiffAt_finsum (since := "2024-11-21")]
                          theorem smoothAt_finsum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {xβ‚€ : M} {f : ΞΉ β†’ M β†’ G} (lf : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) (h : βˆ€ (i : ΞΉ), ContMDiffAt I' I n (f i) xβ‚€) :
                          ContMDiffAt I' I n (fun (x : M) => βˆ‘αΆ  (i : ΞΉ), f i x) xβ‚€

                          Alias of contMDiffAt_finsum.

                          @[deprecated contMDiffWithinAt_finset_prod' (since := "2024-11-21")]
                          theorem smoothWithinAt_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (∏ i ∈ t, f i) s x

                          Alias of contMDiffWithinAt_finset_prod'.

                          @[deprecated contMDiffWithinAt_finset_sum' (since := "2024-11-21")]
                          theorem smoothWithinAt_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (βˆ‘ i ∈ t, f i) s x

                          Alias of contMDiffWithinAt_finset_sum'.

                          @[deprecated contMDiffWithinAt_finset_prod (since := "2024-11-21")]
                          theorem smoothWithinAt_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => ∏ i ∈ t, f i x) s x

                          Alias of contMDiffWithinAt_finset_prod.

                          @[deprecated contMDiffWithinAt_finset_sum (since := "2024-11-21")]
                          theorem smoothWithinAt_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) s x

                          Alias of contMDiffWithinAt_finset_sum.

                          @[deprecated contMDiffAt_finset_prod' (since := "2024-11-21")]
                          theorem smoothAt_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (∏ i ∈ t, f i) x

                          Alias of contMDiffAt_finset_prod'.

                          @[deprecated contMDiffAt_finset_sum' (since := "2024-11-21")]
                          theorem smoothAt_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (βˆ‘ i ∈ t, f i) x

                          Alias of contMDiffAt_finset_sum'.

                          @[deprecated contMDiffAt_finset_prod (since := "2024-11-21")]
                          theorem smoothAt_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (fun (x : M) => ∏ i ∈ t, f i x) x

                          Alias of contMDiffAt_finset_prod.

                          @[deprecated contMDiffAt_finset_sum (since := "2024-11-21")]
                          theorem smoothAt_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffAt I' I n (f i) x) :
                          ContMDiffAt I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) x

                          Alias of contMDiffAt_finset_sum.

                          @[deprecated contMDiffOn_finset_prod' (since := "2024-11-21")]
                          theorem smoothOn_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (∏ i ∈ t, f i) s

                          Alias of contMDiffOn_finset_prod'.

                          @[deprecated contMDiffOn_finset_sum' (since := "2024-11-21")]
                          theorem smoothOn_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (βˆ‘ i ∈ t, f i) s

                          Alias of contMDiffOn_finset_sum'.

                          @[deprecated contMDiffOn_finset_prod (since := "2024-11-21")]
                          theorem smoothOn_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (fun (x : M) => ∏ i ∈ t, f i x) s

                          Alias of contMDiffOn_finset_prod.

                          @[deprecated contMDiffOn_finset_sum (since := "2024-11-21")]
                          theorem smoothOn_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (fun (x : M) => βˆ‘ i ∈ t, f i x) s

                          Alias of contMDiffOn_finset_sum.

                          @[deprecated contMDiffOn_finset_prod' (since := "2024-11-21")]
                          theorem smooth_finset_prod' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (∏ i ∈ t, f i) s

                          Alias of contMDiffOn_finset_prod'.

                          @[deprecated contMDiffOn_finset_sum' (since := "2024-11-21")]
                          theorem smooth_finset_sum' {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiffOn I' I n (f i) s) :
                          ContMDiffOn I' I n (βˆ‘ i ∈ t, f i) s

                          Alias of contMDiffOn_finset_sum'.

                          @[deprecated contMDiff_finset_prod (since := "2024-11-21")]
                          theorem smooth_finset_prod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ i ∈ t, f i x

                          Alias of contMDiff_finset_prod.

                          @[deprecated contMDiff_finset_sum (since := "2024-11-21")]
                          theorem smooth_finset_sum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ΞΉ} {f : ΞΉ β†’ M β†’ G} (h : βˆ€ i ∈ t, ContMDiff I' I n (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘ i ∈ t, f i x

                          Alias of contMDiff_finset_sum.

                          @[deprecated contMDiff_finprod (since := "2024-11-21")]
                          theorem smooth_finprod {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} (h : βˆ€ (i : ΞΉ), ContMDiff I' I n (f i)) (hfin : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ᢠ (i : ι), f i x

                          Alias of contMDiff_finprod.

                          @[deprecated contMDiff_finsum (since := "2024-11-21")]
                          theorem smooth_finsum {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} (h : βˆ€ (i : ΞΉ), ContMDiff I' I n (f i)) (hfin : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘αΆ  (i : ΞΉ), f i x

                          Alias of contMDiff_finsum.

                          @[deprecated contMDiff_finprod_cond (since := "2024-11-21")]
                          theorem smooth_finprod_cond {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} {p : ΞΉ β†’ Prop} (hc : βˆ€ (i : ΞΉ), p i β†’ ContMDiff I' I n (f i)) (hf : LocallyFinite fun (i : ΞΉ) => Function.mulSupport (f i)) :
                          ContMDiff I' I n fun (x : M) => ∏ᢠ (i : ι) (_ : p i), f i x

                          Alias of contMDiff_finprod_cond.

                          @[deprecated contMDiff_finsum_cond (since := "2024-11-21")]
                          theorem smooth_finsum_cond {ΞΉ : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ΞΉ β†’ M β†’ G} {p : ΞΉ β†’ Prop} (hc : βˆ€ (i : ΞΉ), p i β†’ ContMDiff I' I n (f i)) (hf : LocallyFinite fun (i : ΞΉ) => Function.support (f i)) :
                          ContMDiff I' I n fun (x : M) => βˆ‘αΆ  (i : ΞΉ) (_ : p i), f i x

                          Alias of contMDiff_finsum_cond.

                          instance instContMDiffAddSelf {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {n : WithTop β„•βˆž} :
                          theorem ContMDiffWithinAt.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {s : Set M} {x : M} (c : G) (hf : ContMDiffWithinAt I' I n f s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => f x / c) s x
                          theorem ContMDiffWithinAt.sub_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {s : Set M} {x : M} (c : G) (hf : ContMDiffWithinAt I' I n f s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => f x - c) s x
                          theorem ContMDiffAt.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {x : M} (c : G) (hf : ContMDiffAt I' I n f x) :
                          ContMDiffAt I' I n (fun (x : M) => f x / c) x
                          theorem ContMDiffAt.sub_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {x : M} (c : G) (hf : ContMDiffAt I' I n f x) :
                          ContMDiffAt I' I n (fun (x : M) => f x - c) x
                          theorem ContMDiffOn.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {s : Set M} (c : G) (hf : ContMDiffOn I' I n f s) :
                          ContMDiffOn I' I n (fun (x : M) => f x / c) s
                          theorem ContMDiffOn.sub_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {s : Set M} (c : G) (hf : ContMDiffOn I' I n f s) :
                          ContMDiffOn I' I n (fun (x : M) => f x - c) s
                          theorem ContMDiff.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} (c : G) (hf : ContMDiff I' I n f) :
                          ContMDiff I' I n fun (x : M) => f x / c
                          theorem ContMDiff.sub_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} (c : G) (hf : ContMDiff I' I n f) :
                          ContMDiff I' I n fun (x : M) => f x - c
                          @[deprecated ContMDiffWithinAt.div_const (since := "2024-11-21")]
                          theorem SmoothWithinAt.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {s : Set M} {x : M} (c : G) (hf : ContMDiffWithinAt I' I n f s x) :
                          ContMDiffWithinAt I' I n (fun (x : M) => f x / c) s x

                          Alias of ContMDiffWithinAt.div_const.

                          @[deprecated ContMDiffAt.div_const (since := "2024-11-21")]
                          theorem SmoothAt.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {x : M} (c : G) (hf : ContMDiffAt I' I n f x) :
                          ContMDiffAt I' I n (fun (x : M) => f x / c) x

                          Alias of ContMDiffAt.div_const.

                          @[deprecated ContMDiffOn.div_const (since := "2024-11-21")]
                          theorem SmoothOn.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} {s : Set M} (c : G) (hf : ContMDiffOn I' I n f s) :
                          ContMDiffOn I' I n (fun (x : M) => f x / c) s

                          Alias of ContMDiffOn.div_const.

                          @[deprecated ContMDiff.div_const (since := "2024-11-21")]
                          theorem Smooth.div_const {π•œ : Type u_1} [NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {I : ModelWithCorners π•œ E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π•œ E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : M β†’ G} (c : G) (hf : ContMDiff I' I n f) :
                          ContMDiff I' I n fun (x : M) => f x / c

                          Alias of ContMDiff.div_const.