Smoothness of standard maps associated to the product of manifolds #
This file contains results about smoothness of standard maps associated to products of manifolds
- if
f
andg
areC^n
, so is their point-wise product. - the component projections from a product of manifolds are smooth.
- functions into a product (pi type) are
C^n
iff their components are
Alias of ContMDiffWithinAt.prod_mk
.
Alias of ContMDiffWithinAt.prod_mk_space
.
Alias of ContMDiffAt.prod_mk
.
Alias of ContMDiffAt.prod_mk_space
.
Alias of ContMDiffOn.prod_mk
.
Alias of ContMDiffOn.prod_mk_space
.
Alias of ContMDiff.prod_mk
.
Alias of ContMDiff.prod_mk_space
.
Alias of contMDiffWithinAt_fst
.
Alias of contMDiffAt_fst
.
Alias of contMDiffOn_fst
.
Alias of contMDiff_fst
.
Alias of ContMDiffAt.fst
.
Alias of ContMDiff.fst
.
Alias of contMDiffWithinAt_snd
.
Alias of contMDiffAt_snd
.
Alias of contMDiffOn_snd
.
Alias of contMDiff_snd
.
Alias of ContMDiffAt.snd
.
Alias of ContMDiff.snd
.
Alias of contMDiffAt_prod_iff
.
Alias of contMDiff_prod_iff
.
Alias of contMDiff_prod_assoc
.
The product map of two C^n
functions within a set at a point is C^n
within the product set at the product point.
Alias of ContMDiffWithinAt.prod_map
.
Alias of ContMDiffAt.prod_map
.
Alias of ContMDiffOn.prod_map
.
Alias of ContMDiff.prod_map
.
Regularity of functions with codomain Π i, F i
#
We have no ModelWithCorners.pi
yet, so we prove lemmas about functions f : M → Π i, F i
and
use 𝓘(𝕜, Π i, F i)
as the model space.
Alias of contMDiffWithinAt_pi_space
.
Alias of contMDiffAt_pi_space
.
Alias of contMDiffOn_pi_space
.
Alias of contMDiff_pi_space
.