Documentation

Mathlib.Geometry.Manifold.DerivationBundle

Derivation bundle #

In this file we define the derivations at a point of a manifold on the algebra of smooth functions. Moreover, we define the differential of a function in terms of derivations.

The content of this file is not meant to be regarded as an alternative definition to the current tangent bundle but rather as a purely algebraic theory that provides a purely algebraic definition of the Lie algebra for a Lie group.

def smoothFunctionsAlgebra (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :
Equations
Instances For
    def PointedContMDiffMap (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] (n : WithTop ENat) :
    MType (max 0 u_4 u_1)

    Type synonym, introduced to put a different SMul action on C^n⟮I, M; 𝕜⟯ which is defined as f • r = f(x) * r. Denoted as C^n⟮I, M; 𝕜⟯⟨x⟩ within the Derivation namespace.

    Equations
    Instances For
      @[deprecated PointedContMDiffMap (since := "2025-01-09")]
      def PointedSmoothMap (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] (n : WithTop ENat) :
      MType (max 0 u_4 u_1)

      Alias of PointedContMDiffMap.


      Type synonym, introduced to put a different SMul action on C^n⟮I, M; 𝕜⟯ which is defined as f • r = f(x) * r. Denoted as C^n⟮I, M; 𝕜⟯⟨x⟩ within the Derivation namespace.

      Equations
      Instances For

        Type synonym, introduced to put a different SMul action on C^n⟮I, M; 𝕜⟯ which is defined as f • r = f(x) * r. Denoted as C^n⟮I, M; 𝕜⟯⟨x⟩ within the Derivation namespace.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def PointedContMDiffMap.evalAlgebra {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :

          ContMDiffMap.evalRingHom gives rise to an algebra structure of C^∞⟮I, M; 𝕜⟯ on 𝕜.

          Equations
          Instances For
            def PointedContMDiffMap.eval {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

            With the evalAlgebra algebra structure evaluation is actually an algebra morphism.

            Equations
            Instances For
              theorem PointedContMDiffMap.smul_def {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) (f : PointedContMDiffMap 𝕜 I M (WithTop.some Top.top) x) (k : 𝕜) :
              @[reducible, inline]
              abbrev PointDerivation {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :
              Type (max (max u_4 u_1) u_1)

              The derivations at a point of a manifold. Some regard this as a possible definition of the tangent space

              Equations
              Instances For

                Evaluation at a point gives rise to a C^∞⟮I, M; 𝕜⟯-linear map between C^∞⟮I, M; 𝕜⟯ and 𝕜.

                Equations
                Instances For
                  @[deprecated ContMDiffFunction.evalAt (since := "2025-01-09")]
                  def SmoothFunction.evalAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

                  Alias of ContMDiffFunction.evalAt.


                  Evaluation at a point gives rise to a C^∞⟮I, M; 𝕜⟯-linear map between C^∞⟮I, M; 𝕜⟯ and 𝕜.

                  Equations
                  Instances For
                    def Derivation.evalAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

                    The evaluation at a point as a linear map.

                    Equations
                    Instances For
                      theorem Derivation.evalAt_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (X : Derivation 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 (WithTop.some Top.top)) (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 (WithTop.some Top.top))) (f : ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 (WithTop.some Top.top)) (x : M) :
                      def hfdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : ContMDiffMap I I' M M' (WithTop.some Top.top)} {x : M} {y : M'} (h : Eq (DFunLike.coe f x) y) :

                      The heterogeneous differential as a linear map, denoted as 𝒅ₕ within the Manifold namespace. Instead of taking a function as an argument this differential takes h : f x = y. It is particularly handy to deal with situations where the points on where it has to be evaluated are equal but not definitionally equal.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def fdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : ContMDiffMap I I' M M' (WithTop.some Top.top)) (x : M) :

                        The homogeneous differential as a linear map, denoted as 𝒅 within the Manifold namespace.

                        Equations
                        Instances For

                          The homogeneous differential as a linear map, denoted as 𝒅 within the Manifold namespace.

                          Equations
                          Instances For

                            The heterogeneous differential as a linear map, denoted as 𝒅ₕ within the Manifold namespace. Instead of taking a function as an argument this differential takes h : f x = y. It is particularly handy to deal with situations where the points on where it has to be evaluated are equal but not definitionally equal.

                            Equations
                            Instances For
                              theorem fdifferential_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : ContMDiffMap I I' M M' (WithTop.some Top.top)) {x : M} (v : PointDerivation I x) (g : ContMDiffMap I' (modelWithCornersSelf 𝕜 𝕜) M' 𝕜 (WithTop.some Top.top)) :
                              @[deprecated fdifferential_apply (since := "2024-11-11")]
                              theorem apply_fdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : ContMDiffMap I I' M M' (WithTop.some Top.top)) {x : M} (v : PointDerivation I x) (g : ContMDiffMap I' (modelWithCornersSelf 𝕜 𝕜) M' 𝕜 (WithTop.some Top.top)) :

                              Alias of fdifferential_apply.

                              theorem hfdifferential_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : ContMDiffMap I I' M M' (WithTop.some Top.top)} {x : M} {y : M'} (h : Eq (DFunLike.coe f x) y) (v : PointDerivation I x) (g : ContMDiffMap I' (modelWithCornersSelf 𝕜 𝕜) M' 𝕜 (WithTop.some Top.top)) :
                              @[deprecated hfdifferential_apply (since := "2024-11-11")]
                              theorem apply_hfdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : ContMDiffMap I I' M M' (WithTop.some Top.top)} {x : M} {y : M'} (h : Eq (DFunLike.coe f x) y) (v : PointDerivation I x) (g : ContMDiffMap I' (modelWithCornersSelf 𝕜 𝕜) M' 𝕜 (WithTop.some Top.top)) :

                              Alias of hfdifferential_apply.

                              theorem fdifferential_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {E'' : Type u_8} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_9} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {M'' : Type u_10} [TopologicalSpace M''] [ChartedSpace H'' M''] (g : ContMDiffMap I' I'' M' M'' (WithTop.some Top.top)) (f : ContMDiffMap I I' M M' (WithTop.some Top.top)) (x : M) :