Algebraic structures over C^n
functions #
In this file, we define instances of algebraic structures over C^n
functions.
Equations
- ContMDiffMap.instMul = { mul := fun (f g : ContMDiffMap I I' N G n) => ⟨⇑f * ⇑g, ⋯⟩ }
Equations
- ContMDiffMap.instAdd = { add := fun (f g : ContMDiffMap I I' N G n) => ⟨⇑f + ⇑g, ⋯⟩ }
Equations
- ContMDiffMap.instOne = { one := ContMDiffMap.const 1 }
Equations
- ContMDiffMap.instZero = { zero := ContMDiffMap.const 0 }
Equations
- ContMDiffMap.instNSMul = { smul := fun (n_1 : ℕ) (f : ContMDiffMap I I' N G n) => ⟨n_1 • ⇑f, ⋯⟩ }
Equations
- ContMDiffMap.instPow = { pow := fun (f : ContMDiffMap I I' N G n) (n_1 : ℕ) => ⟨⇑f ^ n_1, ⋯⟩ }
Group structure #
In this section we show that C^n
functions valued in a Lie group inherit a group structure
under pointwise multiplication.
Equations
- ContMDiffMap.semigroup = Function.Injective.semigroup (fun (f : ContMDiffMap I I' N G n) => ⇑f) ⋯ ⋯
Equations
- ContMDiffMap.addSemigroup = Function.Injective.addSemigroup (fun (f : ContMDiffMap I I' N G n) => ⇑f) ⋯ ⋯
Equations
- ContMDiffMap.monoid = Function.Injective.monoid (fun (f : ContMDiffMap I I' N G n) => ⇑f) ⋯ ⋯ ⋯ ⋯
Equations
- ContMDiffMap.addMonoid = Function.Injective.addMonoid (fun (f : ContMDiffMap I I' N G n) => ⇑f) ⋯ ⋯ ⋯ ⋯
Coercion to a function as a MonoidHom
. Similar to MonoidHom.coeFn
.
Equations
- ContMDiffMap.coeFnMonoidHom = { toFun := DFunLike.coe, map_one' := ⋯, map_mul' := ⋯ }
Instances For
Coercion to a function as an AddMonoidHom
.
Similar to AddMonoidHom.coeFn
.
Equations
- ContMDiffMap.coeFnAddMonoidHom = { toFun := DFunLike.coe, map_zero' := ⋯, map_add' := ⋯ }
Instances For
For a manifold N
and a C^n
homomorphism φ
between Lie groups G'
, G''
, the
'left-composition-by-φ
' group homomorphism from C^n⟮I, N; I', G'⟯
to C^n⟮I, N; I'', G''⟯
.
Equations
- ContMDiffMap.compLeftMonoidHom I N φ hφ = { toFun := fun (f : ContMDiffMap I I' N G' n) => ⟨⇑φ ∘ ⇑f, ⋯⟩, map_one' := ⋯, map_mul' := ⋯ }
Instances For
For a manifold N
and a C^n
homomorphism φ
between additive Lie groups G'
,
G''
, the 'left-composition-by-φ
' group homomorphism from C^n⟮I, N; I', G'⟯
to
C^n⟮I, N; I'', G''⟯
.
Equations
- ContMDiffMap.compLeftAddMonoidHom I N φ hφ = { toFun := fun (f : ContMDiffMap I I' N G' n) => ⟨⇑φ ∘ ⇑f, ⋯⟩, map_zero' := ⋯, map_add' := ⋯ }
Instances For
For a Lie group G
and open sets U ⊆ V
in N
, the 'restriction' group homomorphism from
C^n⟮I, V; I', G⟯
to C^n⟮I, U; I', G⟯
.
Equations
- ContMDiffMap.restrictMonoidHom I I' G h = { toFun := fun (f : ContMDiffMap I I' (↥V) G n) => ⟨⇑f ∘ Set.inclusion h, ⋯⟩, map_one' := ⋯, map_mul' := ⋯ }
Instances For
For an additive Lie group G
and open sets U ⊆ V
in N
, the 'restriction' group
homomorphism from C^n⟮I, V; I', G⟯
to C^n⟮I, U; I', G⟯
.
Equations
- ContMDiffMap.restrictAddMonoidHom I I' G h = { toFun := fun (f : ContMDiffMap I I' (↥V) G n) => ⟨⇑f ∘ Set.inclusion h, ⋯⟩, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Equations
- ContMDiffMap.commMonoid = Function.Injective.commMonoid (fun (f : ContMDiffMap I I' N G n) => ⇑f) ⋯ ⋯ ⋯ ⋯
Equations
- ContMDiffMap.addCommMonoid = Function.Injective.addCommMonoid (fun (f : ContMDiffMap I I' N G n) => ⇑f) ⋯ ⋯ ⋯ ⋯
Equations
Equations
Equations
Equations
Ring structure #
In this section we show that C^n
functions valued in a C^n
ring R
inherit a ring structure
under pointwise multiplication.
Equations
- ContMDiffMap.semiring = Semiring.mk ⋯ ⋯ ⋯ ⋯ Monoid.npow ⋯ ⋯
Equations
- ContMDiffMap.ring = Ring.mk ⋯ SubNegMonoid.zsmul ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
For a manifold N
and a C^n
homomorphism φ
between C^n
rings R'
, R''
, the
'left-composition-by-φ
' ring homomorphism from C^n⟮I, N; I', R'⟯
to C^n⟮I, N; I'', R''⟯
.
Equations
- ContMDiffMap.compLeftRingHom I N φ hφ = { toFun := fun (f : ContMDiffMap I I' N R' n) => ⟨⇑φ ∘ ⇑f, ⋯⟩, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
For a "C^n
ring" R
and open sets U ⊆ V
in N
, the "restriction" ring homomorphism from
C^n⟮I, V; I', R⟯
to C^n⟮I, U; I', R⟯
.
Equations
- ContMDiffMap.restrictRingHom I I' R h = { toFun := fun (f : ContMDiffMap I I' (↥V) R n) => ⟨⇑f ∘ Set.inclusion h, ⋯⟩, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Coercion to a function as a RingHom
.
Equations
- ContMDiffMap.coeFnRingHom = { toFun := DFunLike.coe, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Function.eval
as a RingHom
on the ring of C^n
functions.
Equations
- ContMDiffMap.evalRingHom m = (Pi.evalRingHom (fun (a : N) => R) m).comp ContMDiffMap.coeFnRingHom
Instances For
Semimodule structure #
In this section we show that C^n
functions valued in a vector space M
over a normed
field 𝕜
inherit a vector space structure.
Equations
- ContMDiffMap.instSMul = { smul := fun (r : 𝕜) (f : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) => ⟨r • ⇑f, ⋯⟩ }
Coercion to a function as a LinearMap
.
Equations
- ContMDiffMap.coeFnLinearMap = { toFun := DFunLike.coe, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Algebra structure #
In this section we show that C^n
functions valued in a normed algebra A
over a normed field 𝕜
inherit an algebra structure.
C^n
constant functions as a RingHom
.
Equations
- ContMDiffMap.C = { toFun := fun (c : 𝕜) => ⟨fun (x : N) => (algebraMap 𝕜 A) c, ⋯⟩, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Equations
Coercion to a function as an AlgHom
.
Equations
- ContMDiffMap.coeFnAlgHom = { toFun := DFunLike.coe, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
Structure as module over scalar functions #
If V
is a module over 𝕜
, then we show that the space of C^n
functions from N
to V
is naturally a vector space over the ring of C^n
functions from N
to 𝕜
.
C^n
scalar-valued functions act by left-multiplication on C^n
functions.
Equations
- ContMDiffMap.instSMul' = { smul := fun (f : ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (g : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) => ⟨fun (x : N) => f x • g x, ⋯⟩ }
The left multiplication with a C^n
scalar function commutes with composition.
The space of C^n
functions with values in a space V
is a module over the space of C^n
functions with values in 𝕜
.