Documentation

Mathlib.Geometry.Manifold.SmoothEmbedding

Smooth embeddings #

In this file, we define C^n embeddings between C^n manifolds. This will be useful to define embedded submanifolds.

Main definitions and results #

Implementation notes #

TODO #

structure Manifold.IsSmoothEmbedding {š•œ : Type u_1} [NontriviallyNormedField š•œ] {E₁ : Type u_2} {Eā‚ƒ : Type u_4} [NormedAddCommGroup E₁] [NormedSpace š•œ E₁] [NormedAddCommGroup Eā‚ƒ] [NormedSpace š•œ Eā‚ƒ] {H : Type u_6} {G : Type u_8} [TopologicalSpace H] [TopologicalSpace G] (I : ModelWithCorners š•œ E₁ H) (J : ModelWithCorners š•œ Eā‚ƒ G) {M : Type u_10} {N : Type u_12} [TopologicalSpace M] [ChartedSpace H M] [TopologicalSpace N] [ChartedSpace G N] (n : WithTop ā„•āˆž) (f : M → N) :

A C^k map f : M → M' is a smooth C^k embedding if it is a topological embedding and a C^k immersion.

Instances For
    theorem Manifold.isSmoothEmbedding_iff {š•œ : Type u_1} [NontriviallyNormedField š•œ] {E₁ : Type u_2} {Eā‚ƒ : Type u_4} [NormedAddCommGroup E₁] [NormedSpace š•œ E₁] [NormedAddCommGroup Eā‚ƒ] [NormedSpace š•œ Eā‚ƒ] {H : Type u_6} {G : Type u_8} [TopologicalSpace H] [TopologicalSpace G] (I : ModelWithCorners š•œ E₁ H) (J : ModelWithCorners š•œ Eā‚ƒ G) {M : Type u_10} {N : Type u_12} [TopologicalSpace M] [ChartedSpace H M] [TopologicalSpace N] [ChartedSpace G N] (n : WithTop ā„•āˆž) (f : M → N) :
    theorem Manifold.IsSmoothEmbedding.id {š•œ : Type u_1} [NontriviallyNormedField š•œ] {E₁ : Type u_2} [NormedAddCommGroup E₁] [NormedSpace š•œ E₁] {H : Type u_6} [TopologicalSpace H] {I : ModelWithCorners š•œ E₁ H} {M : Type u_10} [TopologicalSpace M] [ChartedSpace H M] {n : WithTop ā„•āˆž} [IsManifold I n M] :
    theorem Manifold.IsSmoothEmbedding.prodMap {š•œ : Type u_1} [NontriviallyNormedField š•œ] {E₁ : Type u_2} {Eā‚‚ : Type u_3} {Eā‚ƒ : Type u_4} {Eā‚„ : Type u_5} [NormedAddCommGroup E₁] [NormedSpace š•œ E₁] [NormedAddCommGroup Eā‚‚] [NormedSpace š•œ Eā‚‚] [NormedAddCommGroup Eā‚ƒ] [NormedSpace š•œ Eā‚ƒ] [NormedAddCommGroup Eā‚„] [NormedSpace š•œ Eā‚„] {H : Type u_6} {H' : Type u_7} {G : Type u_8} {G' : Type u_9} [TopologicalSpace H] [TopologicalSpace H'] [TopologicalSpace G] [TopologicalSpace G'] {I : ModelWithCorners š•œ E₁ H} {I' : ModelWithCorners š•œ Eā‚‚ H'} {J : ModelWithCorners š•œ Eā‚ƒ G} {J' : ModelWithCorners š•œ Eā‚„ G'} {M : Type u_10} {M' : Type u_11} {N : Type u_12} {N' : Type u_13} [TopologicalSpace M] [ChartedSpace H M] [TopologicalSpace M'] [ChartedSpace H' M'] [TopologicalSpace N] [ChartedSpace G N] [TopologicalSpace N'] [ChartedSpace G' N'] {n : WithTop ā„•āˆž} {f : M → N} {g : M' → N'} [IsManifold I n M] [IsManifold I' n M'] [IsManifold J n N] [IsManifold J' n N'] (hf : IsSmoothEmbedding I J n f) (hg : IsSmoothEmbedding I' J' n g) :
    IsSmoothEmbedding (I.prod I') (J.prod J') n (Prod.map f g)

    If f: M → N and g: M' Ɨ N' are smooth embeddings, respectively, then so is f Ɨ g: M Ɨ M' → N Ɨ N'.

    theorem Manifold.IsSmoothEmbedding.of_opens {š•œ : Type u_1} [NontriviallyNormedField š•œ] {E₁ : Type u_2} [NormedAddCommGroup E₁] [NormedSpace š•œ E₁] {H : Type u_6} [TopologicalSpace H] {I : ModelWithCorners š•œ E₁ H} {M : Type u_10} [TopologicalSpace M] [ChartedSpace H M] {n : WithTop ā„•āˆž} [IsManifold I n M] (s : TopologicalSpace.Opens M) :