Type tags for right action on the domain of a function #
By default, M
acts on α → β
if it acts on β
, and the action is given by
(c • f) a = c • (f a)
.
In some cases, it is useful to consider another action: if M
acts on α
on the left, then it acts
on α → β
on the right so that (c • f) a = f (c • a)
. E.g., this action is used to reformulate
the Mean Ergodic Theorem in terms of an operator on (L^2).
Main definitions #
DomMulAct M
(notation:Mᵈᵐᵃ
): type synonym forMᵐᵒᵖ
; ifM
multiplicatively acts onα
, thenMᵈᵐᵃ
acts onα → β
for any typeβ
;DomAddAct M
(notation:Mᵈᵃᵃ
): the additive version.
We also define actions of Mᵈᵐᵃ
on:
α → β
provided thatM
acts onα
;A →* B
provided thatM
acts onA
by aMulDistribMulAction
;A →+ B
provided thatM
acts onA
by aDistribMulAction
.
Implementation details #
Motivation #
Right action can be represented in mathlib
as an action of the opposite group Mᵐᵒᵖ
. However,
this "domain shift" action cannot be an instance because this would create a "diamond"
(a.k.a. ambiguous notation): if M
is a monoid, then how does Mᵐᵒᵖ
act on M → M
? On the one
hand, Mᵐᵒᵖ
acts on M
by c • a = a * c.unop
, thus we have an action
(c • f) a = f a * c.unop
. On the other hand, M
acts on itself by multiplication on the left, so
with this new instance we would have (c • f) a = f (c.unop * a)
. Clearly, these are two different
actions, so both of them cannot be instances in the library.
To overcome this difficulty, we introduce a type synonym DomMulAct M := Mᵐᵒᵖ
(notation:
Mᵈᵐᵃ
). This new type carries the same algebraic structures as Mᵐᵒᵖ
but acts on α → β
by this
new action. So, e.g., Mᵈᵐᵃ
acts on (M → M) → M
by DomMulAct.mk c • F f = F (fun a ↦ c • f a)
while (Mᵈᵐᵃ)ᵈᵐᵃ
(which is isomorphic to M
) acts on (M → M) → M
by
DomMulAct.mk (DomMulAct.mk c) • F f = F (fun a ↦ f (c • a))
.
Action on bundled homomorphisms #
If the action of M
on A
preserves some structure, then Mᵈᵐᵃ
acts on bundled homomorphisms from
A
to any type B
that preserve the same structure. Examples (some of them are not yet in the
library) include:
- a
MulDistribMulAction
generates an action onA →* B
; - a
DistribMulAction
generates an action onA →+ B
; - an action on
α
that commutes with action of some other monoidN
generates an action onα →[N] β
; - a
DistribMulAction
on anR
-module that commutes with scalar multiplications byc : R
generates an action onR
-linear maps from this module; - a continuous action on
X
generates an action onC(X, Y)
; - a measurable action on
X
generates an action on{ f : X → Y // Measurable f }
; - a quasi measure preserving action on
X
generates an action onX →ₘ[μ] Y
; - a measure preserving action generates an isometric action on
MeasureTheory.Lp _ _ _
.
Left action vs right action #
It is common in the literature to consider the left action given by (c • f) a = f (c⁻¹ • a)
instead of the action defined in this file. However, this left action is defined only if c
belongs
to a group, not to a monoid, so we decided to go with the right action.
The left action can be written in terms of DomMulAct
as (DomMulAct.mk c)⁻¹ • f
. As for higher
level dynamics objects (orbits, invariant functions etc), they coincide for the left and for the
right action, so lemmas can be formulated in terms of DomMulAct
.
Keywords #
group action, function, domain
If M
multiplicatively acts on α
, then DomMulAct M
acts on α → β
as well as some
bundled maps from α
. This is a type synonym for MulOpposite M
, so this corresponds to a right
action of M
.
Equations
- «term_ᵈᵐᵃ» = Lean.ParserDescr.trailingNode `«term_ᵈᵐᵃ» 1024 1024 (Lean.ParserDescr.symbol "ᵈᵐᵃ")
Instances For
If M
additively acts on α
, then DomAddAct M
acts on α → β
as
well as some bundled maps from α
. This is a type synonym for AddOpposite M
, so this corresponds
to a right action of M
.
Equations
- «term_ᵈᵃᵃ» = Lean.ParserDescr.trailingNode `«term_ᵈᵃᵃ» 1024 1024 (Lean.ParserDescr.symbol "ᵈᵃᵃ")
Instances For
Copy instances from Mᵐᵒᵖ
#
Equations
- DomAddAct.instNonAssocSemiringOfAddOpposite = inst✝
Equations
- DomAddAct.instSubNegAddMonoidOfAddOpposite = inst✝
Equations
- DomAddAct.instAddCommGroupOfAddOpposite = inst✝
Equations
- DomAddAct.instAddCommSemigroupOfAddOpposite = inst✝
Equations
- DomMulAct.instLeftCancelMonoidOfMulOpposite = inst✝
Equations
- DomMulAct.instMulOneClassOfMulOpposite = inst✝
Equations
- DomAddAct.instAddLeftCancelSemigroupOfAddOpposite = inst✝
Equations
- DomAddAct.instInvolutiveNegOfAddOpposite = inst✝
Equations
- DomAddAct.instAddRightCancelMonoidOfAddOpposite = inst✝
Equations
- DomMulAct.instCancelMonoidOfMulOpposite = inst✝
Equations
- DomAddAct.instAddCommMonoidOfAddOpposite = inst✝
Equations
- DomAddAct.instAddCancelMonoidOfAddOpposite = inst✝
Equations
- DomMulAct.instNonUnitalSemiringOfMulOpposite = inst✝
Equations
- DomMulAct.instNonAssocSemiringOfMulOpposite = inst✝
Equations
- DomMulAct.instRightCancelMonoidOfMulOpposite = inst✝
Equations
- DomMulAct.instCancelCommMonoidOfMulOpposite = inst✝
Equations
- DomMulAct.instRightCancelSemigroupOfMulOpposite = inst✝
Equations
- DomMulAct.instDivInvOneMonoidOfMulOpposite = inst✝
Equations
- DomAddAct.instAddCancelCommMonoidOfAddOpposite = inst✝
Equations
- DomMulAct.instDivisionMonoidOfMulOpposite = inst✝
Equations
- DomMulAct.instInvolutiveInvOfMulOpposite = inst✝
Equations
- DomAddAct.instNegZeroClassOfAddOpposite = inst✝
Equations
- DomAddAct.instAddSemigroupOfAddOpposite = inst✝
Equations
- DomAddAct.instAddZeroClassOfAddOpposite = inst✝
Equations
- DomAddAct.instNonAssocSemiringOfAddOpposite_1 = inst✝
Equations
- DomMulAct.instInvOneClassOfMulOpposite = inst✝
Equations
- DomMulAct.instNonAssocSemiringOfMulOpposite_1 = inst✝
Equations
- DomMulAct.instDivisionCommMonoidOfMulOpposite = inst✝
Equations
- DomAddAct.instSubNegZeroMonoidOfAddOpposite = inst✝
Equations
- DomAddAct.instDivisionAddCommMonoidOfAddOpposite = inst✝
Equations
- DomMulAct.instCommSemigroupOfMulOpposite = inst✝
Equations
- DomMulAct.instLeftCancelSemigroupOfMulOpposite = inst✝
Equations
- DomAddAct.instAddRightCancelSemigroupOfAddOpposite = inst✝
Equations
- DomAddAct.instNonUnitalSemiringOfAddOpposite = inst✝
Equations
- DomMulAct.instCommMonoidOfMulOpposite = inst✝
Equations
- DomMulAct.instDivInvMonoidOfMulOpposite = inst✝
Equations
- DomAddAct.instAddLeftCancelMonoidOfAddOpposite = inst✝
Equations
- DomAddAct.instSubtractionMonoidOfAddOpposite = inst✝
Equations
- DomMulAct.instSMulZeroClassForallOfSMul = SMulZeroClass.mk ⋯
Equations
- DomMulAct.instDistribSMulForallOfSMul = DistribSMul.mk ⋯
Equations
- DomMulAct.instDistribMulActionForallOfMulAction = DistribMulAction.mk ⋯ ⋯
Equations
- DomMulAct.instMulDistribMulActionForallOfMulAction = MulDistribMulAction.mk ⋯ ⋯
Equations
- DomMulAct.instSMulMonoidHom = { smul := fun (c : Mᵈᵐᵃ) (f : A →* B) => f.comp (MulDistribMulAction.toMonoidHom A (DomMulAct.mk.symm c)) }
Equations
- DomMulAct.instMulActionMonoidHom = Function.Injective.mulAction DFunLike.coe ⋯ ⋯
Equations
- DomMulAct.instSMulAddMonoidHom = { smul := fun (c : Mᵈᵐᵃ) (f : A →+ B) => f.comp (DistribSMul.toAddMonoidHom A (DomMulAct.mk.symm c)) }
Equations
- DomMulAct.instMulActionAddMonoidHomOfDistribMulAction = Function.Injective.mulAction DFunLike.coe ⋯ ⋯
Equations
- DomMulAct.instDistribMulActionAddMonoidHom = Function.Injective.distribMulAction (AddMonoidHom.coeFn A B) ⋯ ⋯
Equations
- DomMulAct.instMulDistribMulActionMonoidHom = Function.Injective.mulDistribMulAction (MonoidHom.coeFn A B) ⋯ ⋯