# Group actions applied to various types of group #

This file contains lemmas about SMul on GroupWithZero, and Group.

@[simp]
theorem neg_vadd_vadd {α : Type u} {β : Type v} [] [] (c : α) (x : β) :
-c +ᵥ (c +ᵥ x) = x
@[simp]
theorem inv_smul_smul {α : Type u} {β : Type v} [] [] (c : α) (x : β) :
c⁻¹ c x = x
@[simp]
theorem vadd_neg_vadd {α : Type u} {β : Type v} [] [] (c : α) (x : β) :
c +ᵥ (-c +ᵥ x) = x
@[simp]
theorem smul_inv_smul {α : Type u} {β : Type v} [] [] (c : α) (x : β) :
c c⁻¹ x = x
def AddAction.toPerm {α : Type u} {β : Type v} [] [] (a : α) :

Given an action of an additive group α on β, each g : α defines a permutation of β.

Equations
• = { toFun := fun (x : β) => a +ᵥ x, invFun := fun (x : β) => -a +ᵥ x, left_inv := , right_inv := }
Instances For
@[simp]
theorem MulAction.toPerm_apply {α : Type u} {β : Type v} [] [] (a : α) (x : β) :
() x = a x
@[simp]
theorem MulAction.toPerm_symm_apply {α : Type u} {β : Type v} [] [] (a : α) (x : β) :
() x = a⁻¹ x
@[simp]
theorem AddAction.toPerm_apply {α : Type u} {β : Type v} [] [] (a : α) (x : β) :
() x = a +ᵥ x
@[simp]
theorem AddAction.toPerm_symm_apply {α : Type u} {β : Type v} [] [] (a : α) (x : β) :
() x = -a +ᵥ x
def MulAction.toPerm {α : Type u} {β : Type v} [] [] (a : α) :

Given an action of a group α on β, each g : α defines a permutation of β.

Equations
• = { toFun := fun (x : β) => a x, invFun := fun (x : β) => a⁻¹ x, left_inv := , right_inv := }
Instances For
theorem AddAction.toPerm_injective {α : Type u} {β : Type v} [] [] [] :

AddAction.toPerm is injective on faithful actions.

theorem MulAction.toPerm_injective {α : Type u} {β : Type v} [] [] [] :
Function.Injective MulAction.toPerm

MulAction.toPerm is injective on faithful actions.

@[simp]
theorem MulAction.toPermHom_apply (α : Type u) (β : Type v) [] [] (a : α) :
() a =
def MulAction.toPermHom (α : Type u) (β : Type v) [] [] :
α →*

Given an action of a group α on a set β, each g : α defines a permutation of β.

Equations
• = { toFun := MulAction.toPerm, map_one' := , map_mul' := }
Instances For
@[simp]
theorem AddAction.toPermHom_apply_apply (β : Type v) (α : Type u_1) [] [] (a : α) (x : β) :
(() a) x = a +ᵥ x
@[simp]
theorem AddAction.toPermHom_apply_symm_apply (β : Type v) (α : Type u_1) [] [] (a : α) (x : β) :
(Equiv.symm (() a)) x = (Multiplicative.ofAdd a)⁻¹ x
def AddAction.toPermHom (β : Type v) (α : Type u_1) [] [] :
α →+

Given an action of an additive group α on a set β, each g : α defines a permutation of β.

Equations
Instances For
instance Equiv.Perm.applyMulAction (α : Type u_1) :
MulAction () α

The tautological action by Equiv.Perm α on α.

This generalizes Function.End.applyMulAction.

Equations
@[simp]
theorem Equiv.Perm.smul_def {α : Type u_1} (f : ) (a : α) :
f a = f a
instance Equiv.Perm.applyFaithfulSMul (α : Type u_1) :

Equiv.Perm.applyMulAction is faithful.

Equations
• =
theorem neg_vadd_eq_iff {α : Type u} {β : Type v} [] [] {a : α} {x : β} {y : β} :
-a +ᵥ x = y x = a +ᵥ y
theorem inv_smul_eq_iff {α : Type u} {β : Type v} [] [] {a : α} {x : β} {y : β} :
a⁻¹ x = y x = a y
theorem eq_neg_vadd_iff {α : Type u} {β : Type v} [] [] {a : α} {x : β} {y : β} :
x = -a +ᵥ y a +ᵥ x = y
theorem eq_inv_smul_iff {α : Type u} {β : Type v} [] [] {a : α} {x : β} {y : β} :
x = a⁻¹ y a x = y
theorem smul_inv {α : Type u} {β : Type v} [] [] [] [] [] (c : α) (x : β) :
theorem smul_zpow {α : Type u} {β : Type v} [] [] [] [] [] (c : α) (x : β) (p : ) :
(c x) ^ p = c ^ p x ^ p
@[simp]
theorem Commute.smul_right_iff {α : Type u} {β : Type v} [] [] [Mul β] [] [] {a : β} {b : β} (r : α) :
Commute a (r b) Commute a b
@[simp]
theorem Commute.smul_left_iff {α : Type u} {β : Type v} [] [] [Mul β] [] [] {a : β} {b : β} (r : α) :
Commute (r a) b Commute a b
theorem AddAction.bijective {α : Type u} {β : Type v} [] [] (g : α) :
Function.Bijective fun (x : β) => g +ᵥ x
theorem MulAction.bijective {α : Type u} {β : Type v} [] [] (g : α) :
Function.Bijective fun (x : β) => g x
theorem AddAction.injective {α : Type u} {β : Type v} [] [] (g : α) :
Function.Injective fun (x : β) => g +ᵥ x
theorem MulAction.injective {α : Type u} {β : Type v} [] [] (g : α) :
Function.Injective fun (x : β) => g x
theorem AddAction.surjective {α : Type u} {β : Type v} [] [] (g : α) :
Function.Surjective fun (x : β) => g +ᵥ x
theorem MulAction.surjective {α : Type u} {β : Type v} [] [] (g : α) :
Function.Surjective fun (x : β) => g x
theorem vadd_left_cancel {α : Type u} {β : Type v} [] [] (g : α) {x : β} {y : β} (h : g +ᵥ x = g +ᵥ y) :
x = y
theorem smul_left_cancel {α : Type u} {β : Type v} [] [] (g : α) {x : β} {y : β} (h : g x = g y) :
x = y
@[simp]
theorem vadd_left_cancel_iff {α : Type u} {β : Type v} [] [] (g : α) {x : β} {y : β} :
g +ᵥ x = g +ᵥ y x = y
@[simp]
theorem smul_left_cancel_iff {α : Type u} {β : Type v} [] [] (g : α) {x : β} {y : β} :
g x = g y x = y
theorem vadd_eq_iff_eq_neg_vadd {α : Type u} {β : Type v} [] [] (g : α) {x : β} {y : β} :
g +ᵥ x = y x = -g +ᵥ y
theorem smul_eq_iff_eq_inv_smul {α : Type u} {β : Type v} [] [] (g : α) {x : β} {y : β} :
g x = y x = g⁻¹ y
@[simp]
theorem invOf_smul_smul {α : Type u} {β : Type v} [] [] (c : α) (x : β) [] :
c c x = x
@[simp]
theorem smul_invOf_smul {α : Type u} {β : Type v} [] [] (c : α) (x : β) [] :
c c x = x
theorem invOf_smul_eq_iff {α : Type u} {β : Type v} [] [] {c : α} {x : β} {y : β} [] :
c x = y x = c y
theorem smul_eq_iff_eq_invOf_smul {α : Type u} {β : Type v} [] [] {c : α} {x : β} {y : β} [] :
c x = y x = c y

Monoid.toMulAction is faithful on nontrivial cancellative monoids with zero.

Equations
• =
@[simp]
theorem inv_smul_smul₀ {α : Type u} {β : Type v} [] [] {c : α} (hc : c 0) (x : β) :
c⁻¹ c x = x
@[simp]
theorem smul_inv_smul₀ {α : Type u} {β : Type v} [] [] {c : α} (hc : c 0) (x : β) :
c c⁻¹ x = x
theorem inv_smul_eq_iff₀ {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) {x : β} {y : β} :
a⁻¹ x = y x = a y
theorem eq_inv_smul_iff₀ {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) {x : β} {y : β} :
x = a⁻¹ y a x = y
@[simp]
theorem Commute.smul_right_iff₀ {α : Type u} {β : Type v} [] [] [Mul β] [] [] {a : β} {b : β} {c : α} (hc : c 0) :
Commute a (c b) Commute a b
@[simp]
theorem Commute.smul_left_iff₀ {α : Type u} {β : Type v} [] [] [Mul β] [] [] {a : β} {b : β} {c : α} (hc : c 0) :
Commute (c a) b Commute a b
@[simp]
theorem Equiv.smulRight_symm_apply {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) (b : β) :
().symm b = a⁻¹ b
@[simp]
theorem Equiv.smulRight_apply {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) (b : β) :
() b = a b
def Equiv.smulRight {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) :
β β

Right scalar multiplication as an order isomorphism.

Equations
• = { toFun := fun (b : β) => a b, invFun := fun (b : β) => a⁻¹ b, left_inv := , right_inv := }
Instances For
theorem MulAction.bijective₀ {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) :
Function.Bijective fun (x : β) => a x
theorem MulAction.injective₀ {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) :
Function.Injective fun (x : β) => a x
theorem MulAction.surjective₀ {α : Type u} {β : Type v} [] [] {a : α} (ha : a 0) :
Function.Surjective fun (x : β) => a x
@[simp]
theorem DistribMulAction.toAddEquiv_apply {α : Type u} (β : Type v) [] [] [] (x : α) :
∀ (a : β), a = x a
@[simp]
theorem DistribMulAction.toAddEquiv_symm_apply {α : Type u} (β : Type v) [] [] [] (x : α) :
∀ (a : β), .symm a = x⁻¹ a
def DistribMulAction.toAddEquiv {α : Type u} (β : Type v) [] [] [] (x : α) :
β ≃+ β

Each element of the group defines an additive monoid isomorphism.

This is a stronger version of MulAction.toPerm.

Equations
• One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem DistribMulAction.toAddAut_apply (α : Type u) (β : Type v) [] [] [] (x : α) :
def DistribMulAction.toAddAut (α : Type u) (β : Type v) [] [] [] :
α →*

Each element of the group defines an additive monoid isomorphism.

This is a stronger version of MulAction.toPermHom.

Equations
• = { toFun := , map_one' := , map_mul' := }
Instances For
def DistribMulAction.toAddEquiv₀ {α : Type u_1} (β : Type u_2) [] [] [] (x : α) (hx : x 0) :
β ≃+ β

Each non-zero element of a GroupWithZero defines an additive monoid isomorphism of an AddMonoid on which it acts distributively. This is a stronger version of DistribMulAction.toAddMonoidHom.

Equations
• = let __src := ; { toFun := (__src).toFun, invFun := fun (b : β) => x⁻¹ b, left_inv := , right_inv := , map_add' := }
Instances For
theorem smul_eq_zero_iff_eq {α : Type u} {β : Type v} [] [] [] (a : α) {x : β} :
a x = 0 x = 0
theorem smul_ne_zero_iff_ne {α : Type u} {β : Type v} [] [] [] (a : α) {x : β} :
a x 0 x 0
@[simp]
theorem MulDistribMulAction.toMulEquiv_symm_apply {α : Type u} (β : Type v) [] [] [] (x : α) :
∀ (a : β), .symm a = x⁻¹ a
@[simp]
theorem MulDistribMulAction.toMulEquiv_apply {α : Type u} (β : Type v) [] [] [] (x : α) :
∀ (a : β), = x a
def MulDistribMulAction.toMulEquiv {α : Type u} (β : Type v) [] [] [] (x : α) :
β ≃* β

Each element of the group defines a multiplicative monoid isomorphism.

This is a stronger version of MulAction.toPerm.

Equations
• One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem MulDistribMulAction.toMulAut_apply (α : Type u) (β : Type v) [] [] [] (x : α) :
def MulDistribMulAction.toMulAut (α : Type u) (β : Type v) [] [] [] :
α →*

Each element of the group defines a multiplicative monoid isomorphism.

This is a stronger version of MulAction.toPermHom.

Equations
• = { toFun := , map_one' := , map_mul' := }
Instances For
theorem arrowAddAction.proof_2 {G : Type u_3} {A : Type u_1} {B : Type u_2} [] (x : G) (y : G) (f : AB) :
(fun (a : A) => f (-(x + y) +ᵥ a)) = fun (a : A) => f (-y +ᵥ (-x +ᵥ a))
theorem arrowAddAction.proof_1 {G : Type u_3} {A : Type u_1} {B : Type u_2} [] (f : AB) :
(fun (x : A) => f (-0 +ᵥ x)) = f
def arrowAddAction {G : Type u_1} {A : Type u_2} {B : Type u_3} [] :

If G acts on A, then it acts also on A → B, by (g +ᵥ F) a = F (g⁻¹ +ᵥ a)

Equations
Instances For
@[simp]
theorem arrowAction_smul {G : Type u_1} {A : Type u_2} {B : Type u_3} [] [] (g : G) (F : AB) (a : A) :
SMul.smul g F a = F (g⁻¹ a)
@[simp]
theorem arrowAddAction_vadd {G : Type u_1} {A : Type u_2} {B : Type u_3} [] (g : G) (F : AB) (a : A) :
def arrowAction {G : Type u_1} {A : Type u_2} {B : Type u_3} [] [] :
MulAction G (AB)

If G acts on A, then it acts also on A → B, by (g • F) a = F (g⁻¹ • a).

Equations
• arrowAction =
Instances For
def arrowMulDistribMulAction {G : Type u_1} {A : Type u_2} {B : Type u_3} [] [] [] :

When B is a monoid, ArrowAction is additionally a MulDistribMulAction.

Equations
• arrowMulDistribMulAction =
Instances For
@[simp]
theorem mulAutArrow_apply_symm_apply {G : Type u_1} {A : Type u_2} {H : Type u_3} [] [] [] (x : G) :
∀ (a : AH) (a_1 : A), (MulEquiv.symm (mulAutArrow x)) a a_1 = (x⁻¹ a) a_1
@[simp]
theorem mulAutArrow_apply_apply {G : Type u_1} {A : Type u_2} {H : Type u_3} [] [] [] (x : G) :
∀ (a : AH) (a_1 : A), (mulAutArrow x) a a_1 = (x a) a_1
def mulAutArrow {G : Type u_1} {A : Type u_2} {H : Type u_3} [] [] [] :
G →* MulAut (AH)

Given groups G H with G acting on A, G acts by multiplicative automorphisms on A → H.

Equations
Instances For
theorem IsAddUnit.vadd_left_cancel {α : Type u} {β : Type v} [] [] {a : α} (ha : ) {x : β} {y : β} :
a +ᵥ x = a +ᵥ y x = y
abbrev IsAddUnit.vadd_left_cancel.match_1 {α : Type u_1} [] {a : α} (motive : ) :
∀ (ha : ), (∀ (u : ) (hu : u = a), motive )motive ha
Equations
• =
Instances For
theorem IsUnit.smul_left_cancel {α : Type u} {β : Type v} [] [] {a : α} (ha : ) {x : β} {y : β} :
a x = a y x = y
@[simp]
theorem IsUnit.smul_eq_zero {α : Type u} {β : Type v} [] [] [] {u : α} (hu : ) {x : β} :
u x = 0 x = 0
@[simp]
theorem isUnit_smul_iff {α : Type u} {β : Type v} [] [] [] [] [] (g : α) (m : β) :
IsUnit (g m)
theorem IsUnit.smul_sub_iff_sub_inv_smul {α : Type u} {β : Type v} [] [] [] [] [] [] (r : α) (a : β) :
IsUnit (r 1 - a) IsUnit (1 - r⁻¹ a)