MulAction of quotient group on fixed points #
Given a MulAction of a group G on A and a normal subgroup H of G,
there is a MulAction of the quotient group G ⧸ H on fixedPoints H A.
instance
MulAction.instQuotientSubgroupElemFixedPointsSubtypeMem
{G : Type u_1}
[Group G]
{A : Type u_2}
[MulAction G A]
{H : Subgroup G}
[H.Normal]
:
MulAction (G ⧸ H) ↑(fixedPoints (↥H) A)
@[simp]
theorem
MulAction.quotient_out_smul_fixedPoints
{G : Type u_1}
[Group G]
{A : Type u_2}
[MulAction G A]
{H : Subgroup G}
[H.Normal]
(g : G ⧸ H)
(a : ↑(fixedPoints (↥H) A))
: