Documentation

Mathlib.Algebra.Group.Action.End

Endomorphisms, homomorphisms and group actions #

This file defines Function.End as the monoid of endomorphisms on a type, and provides results relating group actions with these endomorphisms.

Notation #

Implementation details #

This file should avoid depending on other parts of GroupTheory, to avoid import cycles. More sophisticated lemmas belong in GroupTheory.GroupAction.

Tags #

group action

def MulAction.toFun (M : Type u_1) (α : Type u_3) [Monoid M] [MulAction M α] :
α Mα

Embedding of α into functions M → α induced by a multiplicative action of M on α.

Equations
Instances For
    def AddAction.toFun (M : Type u_1) (α : Type u_3) [AddMonoid M] [AddAction M α] :
    α Mα

    Embedding of α into functions M → α induced by an additive action of M on α.

    Equations
    Instances For
      @[simp]
      theorem MulAction.toFun_apply {M : Type u_1} {α : Type u_3} [Monoid M] [MulAction M α] (x : M) (y : α) :
      (toFun M α) y x = x y
      @[simp]
      theorem AddAction.toFun_apply {M : Type u_1} {α : Type u_3} [AddMonoid M] [AddAction M α] (x : M) (y : α) :
      (toFun M α) y x = x +ᵥ y
      def Function.End (α : Type u_3) :
      Type u_3

      The monoid of endomorphisms.

      Note that this is generalized by CategoryTheory.End to categories other than Type u.

      Equations
      Instances For
        instance instMonoidEnd {α : Type u_3} :
        Equations
        instance instInhabitedEnd {α : Type u_3} :
        Equations

        The tautological action by Function.End α on α.

        This is generalized to bundled endomorphisms by:

        • Equiv.Perm.applyMulAction
        • AddMonoid.End.applyDistribMulAction
        • AddMonoid.End.applyModule
        • AddAut.applyDistribMulAction
        • MulAut.applyMulDistribMulAction
        • LinearEquiv.applyDistribMulAction
        • LinearMap.applyModule
        • RingHom.applyMulSemiringAction
        • RingAut.applyMulSemiringAction
        • AlgEquiv.applyMulSemiringAction
        Equations

        The tautological additive action by Additive (Function.End α) on α.

        Equations
        @[simp]
        theorem Function.End.smul_def {α : Type u_3} (f : Function.End α) (a : α) :
        f a = f a
        theorem Function.End.mul_def {α : Type u_3} (f g : Function.End α) :
        f * g = f g
        theorem Function.End.one_def {α : Type u_3} :
        1 = id
        def MulAction.toEndHom {M : Type u_1} {α : Type u_3} [Monoid M] [MulAction M α] :

        The monoid hom representing a monoid action.

        When M is a group, see MulAction.toPermHom.

        Equations
        Instances For
          def AddAction.toEndHom {M : Type u_1} {α : Type u_3} [AddMonoid M] [AddAction M α] :

          The additive monoid hom representing an additive monoid action.

          When M is a group, see AddAction.toPermHom.

          Equations
          Instances For
            @[reducible, inline]
            abbrev MulAction.ofEndHom {M : Type u_1} {α : Type u_3} [Monoid M] (f : M →* Function.End α) :

            The monoid action induced by a monoid hom to Function.End α

            See note [reducible non-instances].

            Equations
            Instances For
              @[reducible, inline]
              abbrev AddAction.ofEndHom {M : Type u_1} {α : Type u_3} [AddMonoid M] (f : M →+ Additive (Function.End α)) :

              The additive action induced by a hom to Additive (Function.End α)

              See note [reducible non-instances].

              Equations
              Instances For