Documentation

Mathlib.Algebra.Group.Action.Hom

Homomorphisms and group actions #

@[reducible, inline]
abbrev Function.Surjective.mulActionLeft {R : Type u_4} {S : Type u_5} {M : Type u_6} [Monoid R] [MulAction R M] [Monoid S] [SMul S M] (f : R →* S) (hf : Surjective f) (hsmul : ∀ (c : R) (x : M), f c x = c x) :

Push forward the action of R on M along a compatible surjective map f : R →* S.

See also Function.Surjective.distribMulActionLeft and Function.Surjective.moduleLeft.

Equations
Instances For
    @[reducible, inline]
    abbrev Function.Surjective.addActionLeft {R : Type u_4} {S : Type u_5} {M : Type u_6} [AddMonoid R] [AddAction R M] [AddMonoid S] [VAdd S M] (f : R →+ S) (hf : Surjective f) (hsmul : ∀ (c : R) (x : M), f c +ᵥ x = c +ᵥ x) :

    Push forward the action of R on M along a compatible surjective map f : R →+ S.

    Equations
    Instances For
      @[reducible, inline]
      abbrev MulAction.compHom {M : Type u_1} {N : Type u_2} (α : Type u_3) [Monoid M] [MulAction M α] [Monoid N] (g : N →* M) :

      A multiplicative action of M on α and a monoid homomorphism N → M induce a multiplicative action of N on α.

      See note [reducible non-instances].

      Equations
      Instances For
        @[reducible, inline]
        abbrev AddAction.compHom {M : Type u_1} {N : Type u_2} (α : Type u_3) [AddMonoid M] [AddAction M α] [AddMonoid N] (g : N →+ M) :

        An additive action of M on α and an additive monoid homomorphism N → M induce an additive action of N on α.

        See note [reducible non-instances].

        Equations
        Instances For
          theorem MulAction.compHom_smul_def {E : Type u_4} {F : Type u_5} {G : Type u_6} [Monoid E] [Monoid F] [MulAction F G] (f : E →* F) (a : E) (x : G) :
          a x = f a x
          theorem AddAction.compHom_vadd_def {E : Type u_4} {F : Type u_5} {G : Type u_6} [AddMonoid E] [AddMonoid F] [AddAction F G] (f : E →+ F) (a : E) (x : G) :
          a +ᵥ x = f a +ᵥ x
          theorem MulAction.isPretransitive_compHom {E : Type u_4} {F : Type u_5} {G : Type u_6} [Monoid E] [Monoid F] [MulAction F G] [IsPretransitive F G] {f : E →* F} (hf : Function.Surjective f) :

          If an action is transitive, then composing this action with a surjective homomorphism gives again a transitive action.

          theorem AddAction.isPretransitive_compHom {E : Type u_4} {F : Type u_5} {G : Type u_6} [AddMonoid E] [AddMonoid F] [AddAction F G] [IsPretransitive F G] {f : E →+ F} (hf : Function.Surjective f) :
          theorem MulAction.IsPretransitive.of_compHom {M : Type u_4} {N : Type u_5} {α : Type u_6} [Monoid M] [Monoid N] [MulAction N α] (f : M →* N) [h : IsPretransitive M α] :
          theorem AddAction.IsPretransitive.of_compHom {M : Type u_4} {N : Type u_5} {α : Type u_6} [AddMonoid M] [AddMonoid N] [AddAction N α] (f : M →+ N) [h : IsPretransitive M α] :
          def MonoidHom.smulOneHom {M : Type u_4} {N : Type u_5} [Monoid M] [MulOneClass N] [MulAction M N] [IsScalarTower M N N] :
          M →* N

          If the multiplicative action of M on N is compatible with multiplication on N, then fun x ↦ x • 1 is a monoid homomorphism from M to N.

          Equations
          Instances For
            def AddMonoidHom.vaddZeroHom {M : Type u_4} {N : Type u_5} [AddMonoid M] [AddZeroClass N] [AddAction M N] [VAddAssocClass M N N] :
            M →+ N

            If the additive action of M on N is compatible with addition on N, then fun x ↦ x +ᵥ 0 is an additive monoid homomorphism from M to N.

            Equations
            Instances For
              @[simp]
              theorem AddMonoidHom.vaddZeroHom_apply {M : Type u_4} {N : Type u_5} [AddMonoid M] [AddZeroClass N] [AddAction M N] [VAddAssocClass M N N] (x : M) :
              @[simp]
              theorem MonoidHom.smulOneHom_apply {M : Type u_4} {N : Type u_5} [Monoid M] [MulOneClass N] [MulAction M N] [IsScalarTower M N N] (x : M) :
              def monoidHomEquivMulActionIsScalarTower (M : Type u_4) (N : Type u_5) [Monoid M] [Monoid N] :
              (M →* N) { _inst : MulAction M N // IsScalarTower M N N }

              A monoid homomorphism between two monoids M and N can be equivalently specified by a multiplicative action of M on N that is compatible with the multiplication on N.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def addMonoidHomEquivAddActionIsScalarTower (M : Type u_4) (N : Type u_5) [AddMonoid M] [AddMonoid N] :
                (M →+ N) { _inst : AddAction M N // VAddAssocClass M N N }

                A monoid homomorphism between two additive monoids M and N can be equivalently specified by an additive action of M on N that is compatible with the addition on N.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For