Documentation

Mathlib.GroupTheory.MonoidLocalization.Order

Ordered structures on localizations of commutative monoids #

instance Localization.le {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} :
Equations
  • Localization.le = { le := fun (a b : Localization s) => a.liftOn₂ b (fun (a₁ : α) (a₂ : s) (b₁ : α) (b₂ : s) => b₂ * a₁ a₂ * b₁) }
Equations
instance Localization.lt {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} :
Equations
  • Localization.lt = { lt := fun (a b : Localization s) => a.liftOn₂ b (fun (a₁ : α) (a₂ : s) (b₁ : α) (b₂ : s) => b₂ * a₁ < a₂ * b₁) }
Equations
theorem Localization.mk_le_mk {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
mk a₁ a₂ mk b₁ b₂ b₂ * a₁ a₂ * b₁
theorem AddLocalization.mk_le_mk {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
mk a₁ a₂ mk b₁ b₂ b₂ + a₁ a₂ + b₁
theorem Localization.mk_lt_mk {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
mk a₁ a₂ < mk b₁ b₂ b₂ * a₁ < a₂ * b₁
theorem AddLocalization.mk_lt_mk {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
mk a₁ a₂ < mk b₁ b₂ b₂ + a₁ < a₂ + b₁
instance Localization.decidableLE {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} [DecidableRel fun (x1 x2 : α) => x1 x2] :
DecidableRel fun (x1 x2 : Localization s) => x1 x2
Equations
  • a.decidableLE b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : s) => decidable_of_iff' (x_3 * x x_2 * x_1)
instance AddLocalization.decidableLE {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} [DecidableRel fun (x1 x2 : α) => x1 x2] :
DecidableRel fun (x1 x2 : AddLocalization s) => x1 x2
Equations
  • a.decidableLE b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : s) => decidable_of_iff' (x_3 + x x_2 + x_1)
instance Localization.decidableLT {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} [DecidableRel fun (x1 x2 : α) => x1 < x2] :
DecidableRel fun (x1 x2 : Localization s) => x1 < x2
Equations
  • a.decidableLT b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : s) => decidable_of_iff' (x_3 * x < x_2 * x_1)
instance AddLocalization.decidableLT {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} [DecidableRel fun (x1 x2 : α) => x1 < x2] :
DecidableRel fun (x1 x2 : AddLocalization s) => x1 < x2
Equations
  • a.decidableLT b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : s) => decidable_of_iff' (x_3 + x < x_2 + x_1)

An ordered cancellative monoid injects into its localization by sending a to a / b.

Equations
Instances For

    An ordered cancellative monoid injects into its localization by sending a to a - b.

    Equations
    Instances For
      @[simp]
      theorem Localization.mkOrderEmbedding_apply {α : Type u_1} [OrderedCancelCommMonoid α] {s : Submonoid α} (b : s) (a : α) :
      @[simp]
      theorem AddLocalization.mkOrderEmbedding_apply {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : AddSubmonoid α} (b : s) (a : α) :