Ordered structures on localizations of commutative monoids #
instance
Localization.le
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
:
LE (Localization s)
Equations
- Localization.le = { le := fun (a b : Localization s) => a.liftOn₂ b (fun (a₁ : α) (a₂ : ↥s) (b₁ : α) (b₂ : ↥s) => ↑b₂ * a₁ ≤ ↑a₂ * b₁) ⋯ }
instance
AddLocalization.le
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
:
LE (AddLocalization s)
Equations
- AddLocalization.le = { le := fun (a b : AddLocalization s) => a.liftOn₂ b (fun (a₁ : α) (a₂ : ↥s) (b₁ : α) (b₂ : ↥s) => ↑b₂ + a₁ ≤ ↑a₂ + b₁) ⋯ }
instance
Localization.lt
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
:
LT (Localization s)
Equations
- Localization.lt = { lt := fun (a b : Localization s) => a.liftOn₂ b (fun (a₁ : α) (a₂ : ↥s) (b₁ : α) (b₂ : ↥s) => ↑b₂ * a₁ < ↑a₂ * b₁) ⋯ }
instance
AddLocalization.lt
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
:
LT (AddLocalization s)
Equations
- AddLocalization.lt = { lt := fun (a b : AddLocalization s) => a.liftOn₂ b (fun (a₁ : α) (a₂ : ↥s) (b₁ : α) (b₂ : ↥s) => ↑b₂ + a₁ < ↑a₂ + b₁) ⋯ }
theorem
Localization.mk_le_mk
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
Localization.mk a₁ a₂ ≤ Localization.mk b₁ b₂ ↔ ↑b₂ * a₁ ≤ ↑a₂ * b₁
theorem
AddLocalization.mk_le_mk
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
AddLocalization.mk a₁ a₂ ≤ AddLocalization.mk b₁ b₂ ↔ ↑b₂ + a₁ ≤ ↑a₂ + b₁
theorem
Localization.mk_lt_mk
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
Localization.mk a₁ a₂ < Localization.mk b₁ b₂ ↔ ↑b₂ * a₁ < ↑a₂ * b₁
theorem
AddLocalization.mk_lt_mk
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
AddLocalization.mk a₁ a₂ < AddLocalization.mk b₁ b₂ ↔ ↑b₂ + a₁ < ↑a₂ + b₁
Equations
- Localization.partialOrder = PartialOrder.mk ⋯
instance
AddLocalization.partialOrder
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
:
Equations
- AddLocalization.partialOrder = PartialOrder.mk ⋯
instance
Localization.orderedCancelCommMonoid
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
:
Equations
- Localization.orderedCancelCommMonoid = OrderedCancelCommMonoid.mk ⋯
instance
AddLocalization.orderedAddCancelCommMonoid
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
:
Equations
- AddLocalization.orderedAddCancelCommMonoid = OrderedCancelAddCommMonoid.mk ⋯
instance
Localization.decidableLE
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
:
DecidableRel fun (x1 x2 : Localization s) => x1 ≤ x2
Equations
- a.decidableLE b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : ↥s) => decidable_of_iff' (↑x_3 * x ≤ ↑x_2 * x_1) ⋯
instance
AddLocalization.decidableLE
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
:
DecidableRel fun (x1 x2 : AddLocalization s) => x1 ≤ x2
Equations
- a.decidableLE b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : ↥s) => decidable_of_iff' (↑x_3 + x ≤ ↑x_2 + x_1) ⋯
instance
Localization.decidableLT
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
[DecidableRel fun (x1 x2 : α) => x1 < x2]
:
DecidableRel fun (x1 x2 : Localization s) => x1 < x2
Equations
- a.decidableLT b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : ↥s) => decidable_of_iff' (↑x_3 * x < ↑x_2 * x_1) ⋯
instance
AddLocalization.decidableLT
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
[DecidableRel fun (x1 x2 : α) => x1 < x2]
:
DecidableRel fun (x1 x2 : AddLocalization s) => x1 < x2
Equations
- a.decidableLT b = a.recOnSubsingleton₂ b fun (x x_1 : α) (x_2 x_3 : ↥s) => decidable_of_iff' (↑x_3 + x < ↑x_2 + x_1) ⋯
def
Localization.mkOrderEmbedding
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
(b : ↥s)
:
α ↪o Localization s
An ordered cancellative monoid injects into its localization by sending a
to a / b
.
Equations
- Localization.mkOrderEmbedding b = { toFun := fun (a : α) => Localization.mk a b, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
def
AddLocalization.mkOrderEmbedding
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
(b : ↥s)
:
α ↪o AddLocalization s
An ordered cancellative monoid injects into its localization by
sending a
to a - b
.
Equations
- AddLocalization.mkOrderEmbedding b = { toFun := fun (a : α) => AddLocalization.mk a b, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
Localization.mkOrderEmbedding_apply
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s : Submonoid α}
(b : ↥s)
(a : α)
:
(Localization.mkOrderEmbedding b) a = Localization.mk a b
@[simp]
theorem
AddLocalization.mkOrderEmbedding_apply
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
(b : ↥s)
(a : α)
:
instance
Localization.instLinearOrderedCancelCommMonoid
{α : Type u_1}
[LinearOrderedCancelCommMonoid α]
{s : Submonoid α}
:
Equations
- Localization.instLinearOrderedCancelCommMonoid = LinearOrderedCancelCommMonoid.mk ⋯ Localization.decidableLE Localization.decidableEq Localization.decidableLT ⋯ ⋯ ⋯
instance
AddLocalization.instLinearOrderedAddCancelCommMonoid
{α : Type u_1}
[LinearOrderedCancelAddCommMonoid α]
{s : AddSubmonoid α}
:
Equations
- AddLocalization.instLinearOrderedAddCancelCommMonoid = LinearOrderedCancelAddCommMonoid.mk ⋯ AddLocalization.decidableLE AddLocalization.decidableEq AddLocalization.decidableLT ⋯ ⋯ ⋯