Documentation

Mathlib.GroupTheory.SpecificGroups.Quaternion

Quaternion Groups #

We define the (generalised) quaternion groups QuaternionGroup n of order 4n, also known as dicyclic groups, with elements a i and xa i for i : ZMod n. The (generalised) quaternion groups can be defined by the presentation $\langle a, x | a^{2n} = 1, x^2 = a^n, x^{-1}ax=a^{-1}\rangle$. We write a i for $a^i$ and xa i for $x * a^i$. For n=2 the quaternion group QuaternionGroup 2 is isomorphic to the unit integral quaternions (Quaternion ℤ)ˣ.

Main definition #

QuaternionGroup n: The (generalised) quaternion group of order 4n.

Implementation notes #

This file is heavily based on DihedralGroup by Shing Tak Lam.

In mathematics, the name "quaternion group" is reserved for the cases n ≥ 2. Since it would be inconvenient to carry around this condition we define QuaternionGroup also for n = 0 and n = 1. QuaternionGroup 0 is isomorphic to the infinite dihedral group, while QuaternionGroup 1 is isomorphic to a cyclic group of order 4.

References #

TODO #

Show that QuaternionGroup 2 ≃* (Quaternion ℤ)ˣ.

inductive QuaternionGroup (n : ) :

The (generalised) quaternion group QuaternionGroup n of order 4n. It can be defined by the presentation $\langle a, x | a^{2n} = 1, x^2 = a^n, x^{-1}ax=a^{-1}\rangle$. We write a i for $a^i$ and xa i for $x * a^i$.

Instances For
    @[simp]
    theorem QuaternionGroup.a_mul_a {n : } (i j : ZMod (2 * n)) :
    a i * a j = a (i + j)
    @[simp]
    theorem QuaternionGroup.a_mul_xa {n : } (i j : ZMod (2 * n)) :
    a i * xa j = xa (j - i)
    @[simp]
    theorem QuaternionGroup.xa_mul_a {n : } (i j : ZMod (2 * n)) :
    xa i * a j = xa (i + j)
    @[simp]
    theorem QuaternionGroup.xa_mul_xa {n : } (i j : ZMod (2 * n)) :
    xa i * xa j = a (n + j - i)

    The special case that more or less by definition QuaternionGroup 0 is isomorphic to the infinite dihedral group.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      If 0 < n, then QuaternionGroup n has 4n elements.

      @[simp]
      theorem QuaternionGroup.a_one_pow {n : } (k : ) :
      a 1 ^ k = a k
      theorem QuaternionGroup.a_one_pow_n {n : } :
      a 1 ^ (2 * n) = 1
      @[simp]
      theorem QuaternionGroup.xa_sq {n : } (i : ZMod (2 * n)) :
      xa i ^ 2 = a n
      @[simp]
      theorem QuaternionGroup.xa_pow_four {n : } (i : ZMod (2 * n)) :
      xa i ^ 4 = 1
      @[simp]
      theorem QuaternionGroup.orderOf_xa {n : } [NeZero n] (i : ZMod (2 * n)) :
      orderOf (xa i) = 4

      If 0 < n, then xa i has order 4.

      In the special case n = 1, Quaternion 1 is a cyclic group (of order 4).

      @[simp]
      theorem QuaternionGroup.orderOf_a_one {n : } :
      orderOf (a 1) = 2 * n

      If 0 < n, then a 1 has order 2 * n.

      theorem QuaternionGroup.orderOf_a {n : } [NeZero n] (i : ZMod (2 * n)) :
      orderOf (a i) = 2 * n / (2 * n).gcd i.val

      If 0 < n, then a i has order (2 * n) / gcd (2 * n) i.