Documentation

Mathlib.GroupTheory.SpecificGroups.Cyclic

Cyclic groups #

A group G is called cyclic if there exists an element g : G such that every element of G is of the form g ^ n for some n : ℕ. This file only deals with the predicate on a group to be cyclic. For the concrete cyclic group of order n, see Data.ZMod.Basic.

Main definitions #

Main statements #

Tags #

cyclic group

theorem IsCyclic.exists_generator {α : Type u_1} [Group α] [IsCyclic α] :
∃ (g : α), ∀ (x : α), x Subgroup.zpowers g
theorem IsAddCyclic.exists_generator {α : Type u_1} [AddGroup α] [IsAddCyclic α] :
∃ (g : α), ∀ (x : α), x AddSubgroup.zmultiples g
@[instance 100]
instance isCyclic_of_subsingleton {α : Type u_1} [Group α] [Subsingleton α] :
@[instance 100]
@[simp]
instance IsCyclic.commutative {α : Type u_1} [Group α] [IsCyclic α] :
Std.Commutative fun (x1 x2 : α) => x1 * x2
instance IsAddCyclic.commutative {α : Type u_1} [AddGroup α] [IsAddCyclic α] :
Std.Commutative fun (x1 x2 : α) => x1 + x2
def IsCyclic.commGroup {α : Type u_1} [hg : Group α] [IsCyclic α] :

A cyclic group is always commutative. This is not an instance because often we have a better proof of CommGroup.

Equations
Instances For

    A cyclic group is always commutative. This is not an instance because often we have a better proof of AddCommGroup.

    Equations
    Instances For
      instance instIsCommutativeOfIsCyclicSubtypeMemSubgroup {G : Type u_2} [Group G] (H : Subgroup G) [IsCyclic H] :
      H.IsCommutative
      theorem Nontrivial.of_not_isCyclic {α : Type u_1} [Group α] (nc : ¬IsCyclic α) :

      A non-cyclic multiplicative group is non-trivial.

      A non-cyclic additive group is non-trivial.

      theorem MonoidHom.map_cyclic {G : Type u_2} [Group G] [h : IsCyclic G] (σ : G →* G) :
      ∃ (m : ), ∀ (g : G), σ g = g ^ m
      theorem AddMonoidHom.map_addCyclic {G : Type u_2} [AddGroup G] [h : IsAddCyclic G] (σ : G →+ G) :
      ∃ (m : ), ∀ (g : G), σ g = m g
      theorem isCyclic_iff_exists_orderOf_eq_natCard {α : Type u_1} [Group α] [Finite α] :
      IsCyclic α ∃ (g : α), orderOf g = Nat.card α
      @[deprecated isCyclic_iff_exists_orderOf_eq_natCard (since := "2024-12-20")]
      theorem isCyclic_iff_exists_ofOrder_eq_natCard {α : Type u_1} [Group α] [Finite α] :
      IsCyclic α ∃ (g : α), orderOf g = Nat.card α

      Alias of isCyclic_iff_exists_orderOf_eq_natCard.

      @[deprecated isAddCyclic_iff_exists_addOrderOf_eq_natCard (since := "2024-12-20")]

      Alias of isAddCyclic_iff_exists_addOrderOf_eq_natCard.

      @[deprecated isCyclic_iff_exists_orderOf_eq_natCard (since := "2024-12-20")]

      Alias of isCyclic_iff_exists_orderOf_eq_natCard.

      @[deprecated isAddCyclic_iff_exists_addOrderOf_eq_natCard (since := "2024-12-20")]

      Alias of isAddCyclic_iff_exists_addOrderOf_eq_natCard.

      theorem isCyclic_of_orderOf_eq_card {α : Type u_1} [Group α] [Finite α] (x : α) (hx : orderOf x = Nat.card α) :
      theorem isAddCyclic_of_addOrderOf_eq_card {α : Type u_1} [AddGroup α] [Finite α] (x : α) (hx : addOrderOf x = Nat.card α) :
      theorem zpowers_eq_top_of_prime_card {G : Type u_2} [Group G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g : G} (hg : g 1) :

      Any non-identity element of a finite group of prime order generates the group.

      theorem zmultiples_eq_top_of_prime_card {G : Type u_2} [AddGroup G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g : G} (hg : g 0) :

      Any non-identity element of a finite group of prime order generates the group.

      theorem mem_zpowers_of_prime_card {G : Type u_2} [Group G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g g' : G} (hg : g 1) :
      theorem mem_zmultiples_of_prime_card {G : Type u_2} [AddGroup G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g g' : G} (hg : g 0) :
      theorem mem_powers_of_prime_card {G : Type u_2} [Group G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g g' : G} (hg : g 1) :
      theorem mem_multiples_of_prime_card {G : Type u_2} [AddGroup G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g g' : G} (hg : g 0) :
      theorem powers_eq_top_of_prime_card {G : Type u_2} [Group G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g : G} (hg : g 1) :
      theorem multiples_eq_top_of_prime_card {G : Type u_2} [AddGroup G] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card G = p) {g : G} (hg : g 0) :
      theorem isCyclic_of_prime_card {α : Type u_1} [Group α] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card α = p) :

      A finite group of prime order is cyclic.

      theorem isAddCyclic_of_prime_card {α : Type u_1} [AddGroup α] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card α = p) :

      A finite group of prime order is cyclic.

      theorem isCyclic_of_card_dvd_prime {α : Type u_1} [Group α] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card α p) :

      A finite group of order dividing a prime is cyclic.

      theorem isAddCyclic_of_card_dvd_prime {α : Type u_1} [AddGroup α] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card α p) :

      A finite group of order dividing a prime is cyclic.

      theorem isCyclic_of_surjective {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {F : Type u_4} [hH : IsCyclic G'] [FunLike F G' G] [MonoidHomClass F G' G] (f : F) (hf : Function.Surjective f) :
      theorem isAddCyclic_of_surjective {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {F : Type u_4} [hH : IsAddCyclic G'] [FunLike F G' G] [AddMonoidHomClass F G' G] (f : F) (hf : Function.Surjective f) :
      theorem orderOf_eq_card_of_forall_mem_zpowers {α : Type u_1} [Group α] {g : α} (hx : ∀ (x : α), x Subgroup.zpowers g) :
      theorem addOrderOf_eq_card_of_forall_mem_zmultiples {α : Type u_1} [AddGroup α] {g : α} (hx : ∀ (x : α), x AddSubgroup.zmultiples g) :
      @[deprecated orderOf_eq_card_of_forall_mem_zpowers (since := "2024-11-15")]
      theorem orderOf_generator_eq_natCard {α : Type u_1} [Group α] {g : α} (hx : ∀ (x : α), x Subgroup.zpowers g) :

      Alias of orderOf_eq_card_of_forall_mem_zpowers.

      @[deprecated addOrderOf_eq_card_of_forall_mem_zmultiples (since := "2024-11-15")]
      theorem addOrderOf_generator_eq_natCard {α : Type u_1} [AddGroup α] {g : α} (hx : ∀ (x : α), x AddSubgroup.zmultiples g) :

      Alias of addOrderOf_eq_card_of_forall_mem_zmultiples.

      theorem exists_pow_ne_one_of_isCyclic {G : Type u_2} [Group G] [G_cyclic : IsCyclic G] {k : } (k_pos : k 0) (k_lt_card_G : k < Nat.card G) :
      ∃ (a : G), a ^ k 1
      theorem exists_nsmul_ne_zero_of_isAddCyclic {G : Type u_2} [AddGroup G] [G_cyclic : IsAddCyclic G] {k : } (k_pos : k 0) (k_lt_card_G : k < Nat.card G) :
      ∃ (a : G), k a 0
      theorem Infinite.orderOf_eq_zero_of_forall_mem_zpowers {α : Type u_1} [Group α] [Infinite α] {g : α} (h : ∀ (x : α), x Subgroup.zpowers g) :
      instance Bot.isCyclic {α : Type u_1} [Group α] :
      instance Bot.isAddCyclic {α : Type u_1} [AddGroup α] :
      instance Subgroup.isCyclic {α : Type u_1} [Group α] [IsCyclic α] (H : Subgroup α) :
      instance AddSubgroup.isAddCyclic {α : Type u_1} [AddGroup α] [IsAddCyclic α] (H : AddSubgroup α) :
      theorem isCyclic_of_injective {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [IsCyclic G'] (f : G →* G') (hf : Function.Injective f) :
      theorem isAddCyclic_of_injective {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] [IsAddCyclic G'] (f : G →+ G') (hf : Function.Injective f) :
      theorem Subgroup.isCyclic_of_le {G : Type u_2} [Group G] {H H' : Subgroup G} (h : H H') [IsCyclic H'] :
      theorem AddSubgroup.isAddCyclic_of_le {G : Type u_2} [AddGroup G] {H H' : AddSubgroup G} (h : H H') [IsAddCyclic H'] :
      theorem IsCyclic.card_pow_eq_one_le {α : Type u_1} [Group α] [DecidableEq α] [Fintype α] [IsCyclic α] {n : } (hn0 : 0 < n) :
      (Finset.filter (fun (a : α) => a ^ n = 1) Finset.univ).card n
      theorem IsAddCyclic.card_nsmul_eq_zero_le {α : Type u_1} [AddGroup α] [DecidableEq α] [Fintype α] [IsAddCyclic α] {n : } (hn0 : 0 < n) :
      (Finset.filter (fun (a : α) => n a = 0) Finset.univ).card n
      theorem IsCyclic.exists_monoid_generator {α : Type u_1} [Group α] [Finite α] [IsCyclic α] :
      ∃ (x : α), ∀ (y : α), y Submonoid.powers x
      theorem IsAddCyclic.exists_addMonoid_generator {α : Type u_1} [AddGroup α] [Finite α] [IsAddCyclic α] :
      ∃ (x : α), ∀ (y : α), y AddSubmonoid.multiples x
      theorem IsCyclic.exists_ofOrder_eq_natCard {α : Type u_1} [Group α] [h : IsCyclic α] :
      ∃ (g : α), orderOf g = Nat.card α
      theorem IsAddCyclic.exists_ofOrder_eq_natCard {α : Type u_1} [AddGroup α] [h : IsAddCyclic α] :
      ∃ (g : α), addOrderOf g = Nat.card α
      noncomputable def MulDistribMulAction.toMonoidHomZModOfIsCyclic (G : Type u_2) [Group G] (M : Type u_4) [Monoid M] [IsCyclic G] [MulDistribMulAction M G] {n : } (hn : Nat.card G = n) :

      A distributive action of a monoid on a finite cyclic group of order n factors through an action on ZMod n.

      Equations
      Instances For
        theorem MulDistribMulAction.toMonoidHomZModOfIsCyclic_apply {G : Type u_2} [Group G] {M : Type u_4} [Monoid M] [IsCyclic G] [MulDistribMulAction M G] {n : } (hn : Nat.card G = n) (m : M) (g : G) (k : ) (h : (toMonoidHomZModOfIsCyclic G M hn) m = k) :
        m g = g ^ k
        theorem IsCyclic.unique_zpow_zmod {α : Type u_1} {a : α} [Group α] [Fintype α] (ha : ∀ (x : α), x Subgroup.zpowers a) (x : α) :
        ∃! n : ZMod (Fintype.card α), x = a ^ n.val
        theorem IsAddCyclic.unique_zsmul_zmod {α : Type u_1} {a : α} [AddGroup α] [Fintype α] (ha : ∀ (x : α), x AddSubgroup.zmultiples a) (x : α) :
        ∃! n : ZMod (Fintype.card α), x = n.val a
        theorem IsCyclic.image_range_orderOf {α : Type u_1} {a : α} [Group α] [Fintype α] [DecidableEq α] (ha : ∀ (x : α), x Subgroup.zpowers a) :
        theorem IsAddCyclic.image_range_addOrderOf {α : Type u_1} {a : α} [AddGroup α] [Fintype α] [DecidableEq α] (ha : ∀ (x : α), x AddSubgroup.zmultiples a) :
        theorem IsCyclic.image_range_card {α : Type u_1} {a : α} [Group α] [Fintype α] [DecidableEq α] (ha : ∀ (x : α), x Subgroup.zpowers a) :
        Finset.image (fun (i : ) => a ^ i) (Finset.range (Nat.card α)) = Finset.univ
        theorem IsAddCyclic.image_range_card {α : Type u_1} {a : α} [AddGroup α] [Fintype α] [DecidableEq α] (ha : ∀ (x : α), x AddSubgroup.zmultiples a) :
        theorem IsCyclic.ext {G : Type u_2} [Group G] [Finite G] [IsCyclic G] {d : } {a b : ZMod d} (hGcard : Nat.card G = d) (h : ∀ (t : G), t ^ a.val = t ^ b.val) :
        a = b
        theorem IsAddCyclic.ext {G : Type u_2} [AddGroup G] [Finite G] [IsAddCyclic G] {d : } {a b : ZMod d} (hGcard : Nat.card G = d) (h : ∀ (t : G), a.val t = b.val t) :
        a = b
        theorem card_orderOf_eq_totient_aux₂ {α : Type u_1} [Group α] [DecidableEq α] [Fintype α] (hn : ∀ (n : ), 0 < n(Finset.filter (fun (a : α) => a ^ n = 1) Finset.univ).card n) {d : } (hd : d Fintype.card α) :
        (Finset.filter (fun (a : α) => orderOf a = d) Finset.univ).card = d.totient
        theorem card_addOrderOf_eq_totient_aux₂ {α : Type u_1} [AddGroup α] [DecidableEq α] [Fintype α] (hn : ∀ (n : ), 0 < n(Finset.filter (fun (a : α) => n a = 0) Finset.univ).card n) {d : } (hd : d Fintype.card α) :
        (Finset.filter (fun (a : α) => addOrderOf a = d) Finset.univ).card = d.totient
        theorem isCyclic_of_card_pow_eq_one_le {α : Type u_1} [Group α] [DecidableEq α] [Fintype α] (hn : ∀ (n : ), 0 < n(Finset.filter (fun (a : α) => a ^ n = 1) Finset.univ).card n) :

        Stacks Tag 09HX (This theorem is stronger than 09HX. It removes the abelian condition, and requires only instead of =.)

        theorem isAddCyclic_of_card_nsmul_eq_zero_le {α : Type u_1} [AddGroup α] [DecidableEq α] [Fintype α] (hn : ∀ (n : ), 0 < n(Finset.filter (fun (a : α) => n a = 0) Finset.univ).card n) :
        theorem IsCyclic.card_orderOf_eq_totient {α : Type u_1} [Group α] [IsCyclic α] [Fintype α] {d : } (hd : d Fintype.card α) :
        (Finset.filter (fun (a : α) => orderOf a = d) Finset.univ).card = d.totient
        theorem IsAddCyclic.card_addOrderOf_eq_totient {α : Type u_1} [AddGroup α] [IsAddCyclic α] [Fintype α] {d : } (hd : d Fintype.card α) :
        (Finset.filter (fun (a : α) => addOrderOf a = d) Finset.univ).card = d.totient
        theorem isSimpleGroup_of_prime_card {α : Type u_1} [Group α] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card α = p) :

        A finite group of prime order is simple.

        theorem isSimpleAddGroup_of_prime_card {α : Type u_1} [AddGroup α] {p : } [hp : Fact (Nat.Prime p)] (h : Nat.card α = p) :

        A finite group of prime order is simple.

        theorem commutative_of_cyclic_center_quotient {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [IsCyclic G'] (f : G →* G') (hf : f.ker Subgroup.center G) (a b : G) :
        a * b = b * a

        A group is commutative if the quotient by the center is cyclic. Also see commGroupOfCyclicCenterQuotient for the CommGroup instance.

        theorem commutative_of_addCyclic_center_quotient {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] [IsAddCyclic G'] (f : G →+ G') (hf : f.ker AddSubgroup.center G) (a b : G) :
        a + b = b + a

        A group is commutative if the quotient by the center is cyclic. Also see addCommGroupOfCyclicCenterQuotient for the AddCommGroup instance.

        def commGroupOfCyclicCenterQuotient {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [IsCyclic G'] (f : G →* G') (hf : f.ker Subgroup.center G) :

        A group is commutative if the quotient by the center is cyclic.

        Equations
        Instances For
          def addCommGroupOfAddCyclicCenterQuotient {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] [IsAddCyclic G'] (f : G →+ G') (hf : f.ker AddSubgroup.center G) :

          A group is commutative if the quotient by the center is cyclic.

          Equations
          Instances For
            @[instance 100]
            instance IsSimpleGroup.isCyclic {α : Type u_1} [CommGroup α] [IsSimpleGroup α] :
            @[instance 100]
            @[simp]
            theorem not_isCyclic_iff_exponent_eq_prime {α : Type u_1} [Group α] {p : } (hp : Nat.Prime p) (hα : Nat.card α = p ^ 2) :

            A group of order p ^ 2 is not cyclic if and only if its exponent is p.

            theorem zmultiplesHom_ker_eq {G : Type u_2} [AddGroup G] (g : G) :

            The kernel of zmultiplesHom G g is equal to the additive subgroup generated by addOrderOf g.

            theorem zpowersHom_ker_eq {G : Type u_2} [Group G] (g : G) :
            ((zpowersHom G) g).ker = Subgroup.zpowers (Multiplicative.ofAdd (orderOf g))

            The kernel of zpowersHom G g is equal to the subgroup generated by orderOf g.

            noncomputable def zmodAddCyclicAddEquiv {G : Type u_2} [AddGroup G] (h : IsAddCyclic G) :

            The isomorphism from ZMod n to any cyclic additive group of Nat.card equal to n.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              noncomputable def zmodCyclicMulEquiv {G : Type u_2} [Group G] (h : IsCyclic G) :

              The isomorphism from Multiplicative (ZMod n) to any cyclic group of Nat.card equal to n.

              Equations
              Instances For
                noncomputable def addEquivOfAddCyclicCardEq {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] [hG : IsAddCyclic G] [hH : IsAddCyclic G'] (hcard : Nat.card G = Nat.card G') :
                G ≃+ G'

                Two cyclic additive groups of the same cardinality are isomorphic.

                Equations
                Instances For
                  noncomputable def mulEquivOfCyclicCardEq {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [hG : IsCyclic G] [hH : IsCyclic G'] (hcard : Nat.card G = Nat.card G') :
                  G ≃* G'

                  Two cyclic groups of the same cardinality are isomorphic.

                  Equations
                  Instances For
                    noncomputable def mulEquivOfPrimeCardEq {G : Type u_2} {G' : Type u_3} {p : } [Group G] [Group G'] [Fact (Nat.Prime p)] (hG : Nat.card G = p) (hH : Nat.card G' = p) :
                    G ≃* G'

                    Two groups of the same prime cardinality are isomorphic.

                    Equations
                    Instances For
                      noncomputable def addEquivOfPrimeCardEq {G : Type u_2} {G' : Type u_3} {p : } [AddGroup G] [AddGroup G'] [Fact (Nat.Prime p)] (hG : Nat.card G = p) (hH : Nat.card G' = p) :
                      G ≃+ G'

                      Two additive groups of the same prime cardinality are isomorphic.

                      Equations
                      Instances For
                        noncomputable def IsCyclic.mulAutMulEquiv (G : Type u_2) [Group G] [h : IsCyclic G] :

                        The automorphism group of a cyclic group is isomorphic to the multiplicative group of ZMod.

                        Equations
                        Instances For
                          @[simp]
                          @[simp]
                          theorem IsCyclic.mulAutMulEquiv_symm_apply_apply (G : Type u_2) [Group G] [h : IsCyclic G] (a✝ : (ZMod (Nat.card G))ˣ) (a✝¹ : G) :
                          ((mulAutMulEquiv G).symm a✝) a✝¹ = (zmodCyclicMulEquiv h) (Multiplicative.ofAdd (a✝ Multiplicative.toAdd ((zmodCyclicMulEquiv h).symm a✝¹)))
                          @[simp]
                          theorem IsCyclic.mulAutMulEquiv_symm_apply_symm_apply (G : Type u_2) [Group G] [h : IsCyclic G] (a✝ : (ZMod (Nat.card G))ˣ) (a✝¹ : G) :
                          (MulEquiv.symm ((mulAutMulEquiv G).symm a✝)) a✝¹ = (zmodCyclicMulEquiv h) (Multiplicative.ofAdd (a✝⁻¹ Multiplicative.toAdd ((zmodCyclicMulEquiv h).symm a✝¹)))
                          @[simp]
                          theorem IsCyclic.val_mulAutMulEquiv_apply (G : Type u_2) [Group G] [h : IsCyclic G] (a✝ : MulAut G) :
                          ((mulAutMulEquiv G) a✝) = Multiplicative.toAdd ((zmodCyclicMulEquiv h).symm (a✝ ((zmodCyclicMulEquiv h) (Multiplicative.ofAdd 1))))
                          theorem IsCyclic.card_mulAut (G : Type u_2) [Group G] [Finite G] [h : IsCyclic G] :
                          Nat.card (MulAut G) = (Nat.card G).totient

                          Groups with a given generator #

                          We state some results in terms of an explicitly given generator. The generating property is given as in IsCyclic.exists_generator.

                          The main statements are about the existence and uniqueness of homomorphisms and isomorphisms specified by the image of the given generator.

                          noncomputable def monoidHomOfForallMemZpowers {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) {g' : G'} (hg' : orderOf g' orderOf g) :
                          G →* G'

                          If g generates the group G and g' is an element of another group G' whose order divides that of g, then there is a homomorphism G →* G' mapping g to g'.

                          Equations
                          Instances For
                            noncomputable def addMonoidHomOfForallMemZmultiples {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) {g' : G'} (hg' : addOrderOf g' addOrderOf g) :
                            G →+ G'

                            If g generates the additive group G and g' is an element of another additive group G' whose order divides that of g, then there is a homomorphism G →+ G' mapping g to g'.

                            Equations
                            Instances For
                              @[simp]
                              theorem monoidHomOfForallMemZpowers_apply_gen {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) {g' : G'} (hg' : orderOf g' orderOf g) :
                              @[simp]
                              theorem addMonoidHomOfForallMemZmultiples_apply_gen {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) {g' : G'} (hg' : addOrderOf g' addOrderOf g) :
                              theorem MonoidHom.eq_iff_eq_on_generator {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) (f₁ f₂ : G →* G') :
                              f₁ = f₂ f₁ g = f₂ g

                              Two group homomorphisms G →* G' are equal if and only if they agree on a generator of G.

                              theorem AddMonoidHom.eq_iff_eq_on_generator {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) (f₁ f₂ : G →+ G') :
                              f₁ = f₂ f₁ g = f₂ g

                              Two homomorphisms G →+ G' of additive groups are equal if and only if they agree on a generator of G.

                              theorem MulEquiv.eq_iff_eq_on_generator {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) (f₁ f₂ : G ≃* G') :
                              f₁ = f₂ f₁ g = f₂ g

                              Two group isomorphisms G ≃* G' are equal if and only if they agree on a generator of G.

                              theorem AddEquiv.eq_iff_eq_on_generator {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) (f₁ f₂ : G ≃+ G') :
                              f₁ = f₂ f₁ g = f₂ g

                              Two isomorphisms G ≃+ G' of additive groups are equal if and only if they agree on a generator of G.

                              noncomputable def mulEquivOfOrderOfEq {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) {g' : G'} (hg' : ∀ (x : G'), x Subgroup.zpowers g') (h : orderOf g = orderOf g') :
                              G ≃* G'

                              Given two groups that are generated by elements g and g' of the same order, we obtain an isomorphism sending g to g'.

                              Equations
                              Instances For
                                noncomputable def addEquivOfAddOrderOfEq {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) {g' : G'} (hg' : ∀ (x : G'), x AddSubgroup.zmultiples g') (h : addOrderOf g = addOrderOf g') :
                                G ≃+ G'

                                Given two additive groups that are generated by elements g and g' of the same order, we obtain an isomorphism sending g to g'.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem mulEquivOfOrderOfEq_apply_gen {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) {g' : G'} (hg' : ∀ (x : G'), x Subgroup.zpowers g') (h : orderOf g = orderOf g') :
                                  (mulEquivOfOrderOfEq hg hg' h) g = g'
                                  @[simp]
                                  theorem addEquivOfAddOrderOfEq_apply_gen {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) {g' : G'} (hg' : ∀ (x : G'), x AddSubgroup.zmultiples g') (h : addOrderOf g = addOrderOf g') :
                                  (addEquivOfAddOrderOfEq hg hg' h) g = g'
                                  @[simp]
                                  theorem mulEquivOfOrderOfEq_symm {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) {g' : G'} (hg' : ∀ (x : G'), x Subgroup.zpowers g') (h : orderOf g = orderOf g') :
                                  (mulEquivOfOrderOfEq hg hg' h).symm = mulEquivOfOrderOfEq hg' hg
                                  @[simp]
                                  theorem addEquivOfAddOrderOfEq_symm {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) {g' : G'} (hg' : ∀ (x : G'), x AddSubgroup.zmultiples g') (h : addOrderOf g = addOrderOf g') :
                                  theorem mulEquivOfOrderOfEq_symm_apply_gen {G : Type u_2} {G' : Type u_3} [Group G] [Group G'] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) {g' : G'} (hg' : ∀ (x : G'), x Subgroup.zpowers g') (h : orderOf g = orderOf g') :
                                  (mulEquivOfOrderOfEq hg hg' h).symm g' = g
                                  theorem addEquivOfAddOrderOfEq_symm_apply_gen {G : Type u_2} {G' : Type u_3} [AddGroup G] [AddGroup G'] {g : G} (hg : ∀ (x : G), x AddSubgroup.zmultiples g) {g' : G'} (hg' : ∀ (x : G'), x AddSubgroup.zmultiples g') (h : addOrderOf g = addOrderOf g') :
                                  (addEquivOfAddOrderOfEq hg hg' h).symm g' = g