The subgroup generated by an element.
Equations
- Subgroup.zpowers g = { carrier := Set.range fun (x : ℤ) => g ^ x, mul_mem' := ⋯, one_mem' := ⋯, inv_mem' := ⋯ }
Instances For
The additive subgroup generated by an element.
Equations
- AddSubgroup.zmultiples g = { carrier := Set.range fun (x : ℤ) => x • g, add_mem' := ⋯, zero_mem' := ⋯, neg_mem' := ⋯ }
Instances For
@[simp]
noncomputable instance
Subgroup.decidableMemZPowers
{G : Type u_1}
[Group G]
{a : G}
:
DecidablePred fun (x : G) => x ∈ zpowers a
Equations
- Subgroup.decidableMemZPowers = Classical.decPred fun (x : G) => x ∈ Subgroup.zpowers a
noncomputable instance
AddSubgroup.decidableMemZMultiples
{G : Type u_1}
[AddGroup G]
{a : G}
:
DecidablePred fun (x : G) => x ∈ zmultiples a
Equations
- AddSubgroup.decidableMemZMultiples = Classical.decPred fun (x : G) => x ∈ AddSubgroup.zmultiples a
@[simp]
@[simp]
@[simp]
theorem
AddSubgroup.forall_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : ↥(zmultiples x) → Prop}
:
@[simp]
theorem
AddSubgroup.exists_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : ↥(zmultiples x) → Prop}
:
@[simp]
Alias of the reverse direction of Subgroup.zpowers_le
.
theorem
AddSubgroup.zmultiples_le_of_mem
{G : Type u_1}
[AddGroup G]
{g : G}
{H : AddSubgroup G}
:
g ∈ H → zmultiples g ≤ H
Alias of the reverse direction of AddSubgroup.zmultiples_le
.
@[simp]
@[simp]
@[simp]