Documentation

Mathlib.LinearAlgebra.Basis.MulOpposite

Basis of an opposite space #

This file defines the basis of an opposite space and shows that the opposite space is finite-dimensional and free when the original space is.

noncomputable def Module.Basis.mulOpposite {R : Type u_1} {H : Type u_2} {ι : Type u_3} [Semiring R] [AddCommMonoid H] [Module R H] (b : Basis ι R H) :

The multiplicative opposite of a basis: b.mulOpposite i ↦ op (b i).

Equations
Instances For
    @[simp]
    theorem Module.Basis.mulOpposite_apply {R : Type u_1} {H : Type u_2} {ι : Type u_3} [Semiring R] [AddCommMonoid H] [Module R H] (b : Basis ι R H) (i : ι) :
    @[simp]
    theorem Module.Basis.repr_unop_eq_mulOpposite_repr {R : Type u_1} {H : Type u_2} {ι : Type u_3} [Semiring R] [AddCommMonoid H] [Module R H] (b : Basis ι R H) (x : Hᵐᵒᵖ) :
    @[simp]
    theorem Module.Basis.mulOpposite_repr_op {R : Type u_1} {H : Type u_2} {ι : Type u_3} [Semiring R] [AddCommMonoid H] [Module R H] (b : Basis ι R H) (x : H) :