Bases for the product of modules #
def
Basis.prod
{ι : Type u_1}
{ι' : Type u_2}
{R : Type u_3}
{M : Type u_5}
{M' : Type u_6}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid M']
[Module R M']
(b : Basis ι R M)
(b' : Basis ι' R M')
:
Basis.prod
maps an ι
-indexed basis for M
and an ι'
-indexed basis for M'
to an ι ⊕ ι'
-index basis for M × M'
.
For the specific case of R × R
, see also Basis.finTwoProd
.
Equations
Instances For
@[simp]
@[simp]
@[simp]
theorem
Basis.prod_apply
{ι : Type u_1}
{ι' : Type u_2}
{R : Type u_3}
{M : Type u_5}
{M' : Type u_6}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid M']
[Module R M']
(b : Basis ι R M)
(b' : Basis ι' R M')
(i : ι ⊕ ι')
:
instance
Free.prod
(R : Type u_7)
(M : Type u_8)
(N : Type u_9)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
[Module.Free R M]
[Module.Free R N]
:
Module.Free R (M × N)