Rank and torsion #
Main statements #
rank_quotient_eq_of_le_torsion
:rank M/N = rank M
ifN ≤ torsion M
.
theorem
rank_quotient_eq_of_le_torsion
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{M' : Submodule R M}
(hN : M' ≤ Submodule.torsion R M)
:
Module.rank R (M ⧸ M') = Module.rank R M