Algebra isomorphisms between endomorphisms of projective modules are inner #
This file shows that given any algebra equivalence f : End K V ≃ₐ[K] End K W,
there exists a linear equivalence T : V ≃ₗ[K] W such that f x = T ∘ₗ x ∘ₗ T.symm.
In other words, for V = W, the map MulSemiringAction.toAlgEquiv from
GeneralLinearGroup K V to End K V ≃ₐ[K] End K V is surjective.
For the continuous versions, see Mathlib/Analysis/Normed/Operator/ContinuousAlgEquiv.lean.
theorem
AlgEquiv.eq_linearEquivConjAlgEquiv
{K : Type u_1}
{V : Type u_2}
{W : Type u_3}
[Semifield K]
[AddCommMonoid V]
[Module K V]
[Module.Projective K V]
[AddCommMonoid W]
[Module K W]
[Module.Projective K W]
(f : Module.End K V ≃ₐ[K] Module.End K W)
:
∃ (T : V ≃ₗ[K] W), f = LinearEquiv.conjAlgEquiv K T
Given an algebra isomorphism f : End K V ≃ₐ[K] End K W, there exists a linear isomorphism T
such that f is given by x ↦ T ∘ₗ x ∘ₗ T.symm.
theorem
LinearEquiv.conjAlgEquiv_surjective
(K : Type u_1)
(V : Type u_2)
(W : Type u_3)
[Semifield K]
[AddCommMonoid V]
[Module K V]
[Module.Projective K V]
[AddCommMonoid W]
[Module K W]
[Module.Projective K W]
:
theorem
Module.End.mulSemiringActionToAlgEquiv_conjAct_surjective
{K : Type u_1}
{V : Type u_2}
[Semifield K]
[AddCommMonoid V]
[Module K V]
[Projective K V]
:
Alternate statement of AlgEquiv.eq_linearEquivConjAlgEquiv for when V = W.