The Left Exactness of Hom #
If M1 → M2 → M3 → 0 is an exact sequence of R-modules and N is a R-module,
then 0 → (M3 →ₗ[R] N) → (M2 →ₗ[R] N) → (M1 →ₗ[R] N) is exact. In this file, we
show the exactness at M2 →ₗ[R] N (exact_lcomp_of_exact_of_surjective);
the injectivity part is LinearMap.lcomp_injective_of_surjective in the file
Mathlib.LinearAlgebra.BilinearMap.
theorem
LinearMap.exact_lcomp_of_exact_of_surjective
{R : Type u_1}
[CommRing R]
{M1 : Type u_2}
{M2 : Type u_3}
{M3 : Type u_4}
(N : Type u_5)
[AddCommGroup M1]
[AddCommGroup M2]
[AddCommGroup M3]
[AddCommGroup N]
[Module R M1]
[Module R M2]
[Module R M3]
[Module R N]
{f : M1 →ₗ[R] M2}
{g : M2 →ₗ[R] M3}
(exac : Function.Exact ⇑f ⇑g)
(surj : Function.Surjective ⇑g)
:
Function.Exact ⇑(lcomp R N g) ⇑(lcomp R N f)