Documentation

Mathlib.LinearAlgebra.Matrix.DotProduct

Dot product of two vectors #

This file contains some results on the map Matrix.dotProduct, which maps two vectors v w : n → R to the sum of the entrywise products v i * w i.

Main results #

Tags #

matrix, reindex

@[simp]
theorem Matrix.dotProduct_stdBasis_eq_mul {n : Type u_2} {R : Type u_4} [Semiring R] [Fintype n] [DecidableEq n] (v : nR) (c : R) (i : n) :
Matrix.dotProduct v ((LinearMap.stdBasis R (fun (x : n) => R) i) c) = v i * c
theorem Matrix.dotProduct_stdBasis_one {n : Type u_2} {R : Type u_4} [Semiring R] [Fintype n] [DecidableEq n] (v : nR) (i : n) :
Matrix.dotProduct v ((LinearMap.stdBasis R (fun (x : n) => R) i) 1) = v i
theorem Matrix.dotProduct_eq {n : Type u_2} {R : Type u_4} [Semiring R] [Fintype n] (v : nR) (w : nR) (h : ∀ (u : nR), Matrix.dotProduct v u = Matrix.dotProduct w u) :
v = w
theorem Matrix.dotProduct_eq_iff {n : Type u_2} {R : Type u_4} [Semiring R] [Fintype n] {v : nR} {w : nR} :
(∀ (u : nR), Matrix.dotProduct v u = Matrix.dotProduct w u) v = w
theorem Matrix.dotProduct_eq_zero {n : Type u_2} {R : Type u_4} [Semiring R] [Fintype n] (v : nR) (h : ∀ (w : nR), Matrix.dotProduct v w = 0) :
v = 0
theorem Matrix.dotProduct_eq_zero_iff {n : Type u_2} {R : Type u_4} [Semiring R] [Fintype n] {v : nR} :
(∀ (w : nR), Matrix.dotProduct v w = 0) v = 0
theorem Matrix.dotProduct_nonneg_of_nonneg {n : Type u_2} {R : Type u_4} [OrderedSemiring R] [Fintype n] {v : nR} {w : nR} (hv : 0 v) (hw : 0 w) :
theorem Matrix.dotProduct_le_dotProduct_of_nonneg_right {n : Type u_2} {R : Type u_4} [OrderedSemiring R] [Fintype n] {u : nR} {v : nR} {w : nR} (huv : u v) (hw : 0 w) :
theorem Matrix.dotProduct_le_dotProduct_of_nonneg_left {n : Type u_2} {R : Type u_4} [OrderedSemiring R] [Fintype n] {u : nR} {v : nR} {w : nR} (huv : u v) (hw : 0 w) :
@[simp]
theorem Matrix.dotProduct_self_eq_zero {n : Type u_2} {R : Type u_4} [Fintype n] [LinearOrderedRing R] {v : nR} :
@[simp]
theorem Matrix.dotProduct_star_self_eq_zero {n : Type u_2} {R : Type u_4} [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] {v : nR} :

Note that this applies to via Complex.strictOrderedCommRing.

@[simp]
theorem Matrix.dotProduct_self_star_eq_zero {n : Type u_2} {R : Type u_4} [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] {v : nR} :

Note that this applies to via Complex.strictOrderedCommRing.

@[simp]
theorem Matrix.conjTranspose_mul_self_eq_zero {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype m] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] {A : Matrix m n R} :
@[simp]
theorem Matrix.self_mul_conjTranspose_eq_zero {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] {A : Matrix m n R} :
theorem Matrix.conjTranspose_mul_self_mul_eq_zero {m : Type u_1} {n : Type u_2} {p : Type u_3} {R : Type u_4} [Fintype m] [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] (A : Matrix m n R) (B : Matrix n p R) :
Matrix.conjTranspose A * A * B = 0 A * B = 0
theorem Matrix.self_mul_conjTranspose_mul_eq_zero {m : Type u_1} {n : Type u_2} {p : Type u_3} {R : Type u_4} [Fintype m] [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] (A : Matrix m n R) (B : Matrix m p R) :
theorem Matrix.mul_self_mul_conjTranspose_eq_zero {m : Type u_1} {n : Type u_2} {p : Type u_3} {R : Type u_4} [Fintype m] [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] (A : Matrix m n R) (B : Matrix p m R) :
B * (A * Matrix.conjTranspose A) = 0 B * A = 0
theorem Matrix.mul_conjTranspose_mul_self_eq_zero {m : Type u_1} {n : Type u_2} {p : Type u_3} {R : Type u_4} [Fintype m] [Fintype n] [PartialOrder R] [NonUnitalRing R] [StarRing R] [StarOrderedRing R] [NoZeroDivisors R] (A : Matrix m n R) (B : Matrix p n R) :