Documentation

Mathlib.LinearAlgebra.Matrix.FixedDetMatrices

Matrices with fixed determinant #

This file defines the type of matrices with fixed determinant m and proves some basic results about them.

We also prove that the subgroup of SL(2,ℤ) generated by S and T is the whole group.

Note: Some of this was done originally in Lean 3 in the kbb (https://github.com/kim-em/kbb/tree/master) repository, so credit to those authors.

def FixedDetMatrix (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] (m : R) :
Type (max 0 u_1 u_2)

The subtype of matrices with fixed determinant m.

Equations
Instances For
    theorem FixedDetMatrices.ext' (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] {m : R} {A B : FixedDetMatrix n R m} (h : A = B) :
    A = B

    Extensionality theorem for FixedDetMatrix with respect to the underlying matrix, not entriwise.

    theorem FixedDetMatrices.ext (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] {m : R} {A B : FixedDetMatrix n R m} (h : ∀ (i j : n), A i j = B i j) :
    A = B
    theorem FixedDetMatrices.smul_def (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] (m : R) (g : Matrix.SpecialLinearGroup n R) (A : FixedDetMatrix n R m) :
    g A = g * A,
    theorem FixedDetMatrices.smul_coe (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] (m : R) (g : Matrix.SpecialLinearGroup n R) (A : FixedDetMatrix n R m) :
    (g A) = g * A

    Set of representatives for the orbits under S and T.

    Equations
    Instances For

      Reduction step for matrices in Δ m which moves the matrices towards reps.

      Equations
      Instances For
        @[irreducible]
        def FixedDetMatrices.reduce_rec {m : } {C : FixedDetMatrix (Fin 2) mSort u_3} (base : (A : FixedDetMatrix (Fin 2) m) → A 1 0 = 0C A) (step : (A : FixedDetMatrix (Fin 2) m) → A 1 0 0C (reduceStep A)C A) (A : FixedDetMatrix (Fin 2) m) :
        C A

        Reduction lemma for integral FixedDetMatrices.

        Equations
        Instances For
          @[irreducible]

          Map from Δ m → Δ m which reduces a FixedDetMatrix towards a representative element in reps.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem FixedDetMatrices.reduce_of_pos {m : } {A : FixedDetMatrix (Fin 2) m} (hc : A 1 0 = 0) (ha : 0 < A 0 0) :
            reduce A = ModularGroup.T ^ (-(A 0 1 / A 1 1)) A
            theorem FixedDetMatrices.reduce_of_not_pos {m : } {A : FixedDetMatrix (Fin 2) m} (hc : A 1 0 = 0) (ha : ¬0 < A 0 0) :
            @[simp]
            theorem FixedDetMatrices.reduce_reduceStep {m : } {A : FixedDetMatrix (Fin 2) m} (hc : A 1 0 0) :
            theorem FixedDetMatrices.reps_entries_le_m' {m : } {A : FixedDetMatrix (Fin 2) m} (h : A reps m) (i j : Fin 2) :
            A i j Finset.Icc (-|m|) |m|

            An auxiliary result bounding the size of the entries of the representatives in reps.

            noncomputable instance FixedDetMatrices.repsFintype (k : ) :
            Fintype (reps k)
            Equations
            theorem FixedDetMatrices.induction_on {m : } {C : FixedDetMatrix (Fin 2) mProp} {A : FixedDetMatrix (Fin 2) m} (hm : m 0) (h0 : ∀ (A : FixedDetMatrix (Fin 2) m), A 1 0 = 00 < A 0 00 A 0 1|A 0 1| < |A 1 1|C A) (hS : ∀ (B : FixedDetMatrix (Fin 2) m), C BC (ModularGroup.S B)) (hT : ∀ (B : FixedDetMatrix (Fin 2) m), C BC (ModularGroup.T B)) :
            C A
            theorem FixedDetMatrices.reps_one_id (A : FixedDetMatrix (Fin 2) 1) (a1 : A 1 0 = 0) (a4 : 0 < A 0 0) (a6 : |A 0 1| < |A 1 1|) :
            A = 1