Documentation

Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo

The group GL (Fin 2) R #

def Matrix.IsParabolic {R : Type u_1} [CommRing R] (m : Matrix (Fin 2) (Fin 2) R) :

A 2 × 2 matrix is parabolic if it is non-scalar and its discriminant is 0.

Equations
Instances For
    theorem Matrix.disc_conj {R : Type u_1} [CommRing R] [Nontrivial R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
    (g * m * g⁻¹).disc = m.disc
    theorem Matrix.disc_conj' {R : Type u_1} [CommRing R] [Nontrivial R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
    (g⁻¹ * m * g).disc = m.disc
    theorem Matrix.isParabolic_conj_iff {R : Type u_1} [CommRing R] [Nontrivial R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
    theorem Matrix.isParabolic_conj'_iff {R : Type u_1} [CommRing R] [Nontrivial R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
    theorem Matrix.sub_scalar_sq_eq_disc {K : Type u_1} [Field K] {m : Matrix (Fin 2) (Fin 2) K} [NeZero 2] :
    (m - (scalar (Fin 2)) (m.trace / 2)) ^ 2 = (scalar (Fin 2)) (m.disc / 4)
    def Matrix.parabolicEigenvalue {K : Type u_1} [Field K] (m : Matrix (Fin 2) (Fin 2) K) :
    K

    The unique eigenvalue of a parabolic matrix (junk if m is not parabolic).

    Equations
    Instances For
      theorem Matrix.IsParabolic.sub_eigenvalue_sq_eq_zero {K : Type u_1} [Field K] {m : Matrix (Fin 2) (Fin 2) K} [NeZero 2] (hm : m.IsParabolic) :
      (m - (scalar (Fin 2)) m.parabolicEigenvalue) ^ 2 = 0
      theorem Matrix.isParabolic_iff_exists {K : Type u_1} [Field K] {m : Matrix (Fin 2) (Fin 2) K} [NeZero 2] :
      m.IsParabolic ∃ (a : K) (n : Matrix (Fin 2) (Fin 2) K), m = (scalar (Fin 2)) a + n n 0 n ^ 2 = 0

      Characterization of parabolic elements: they have the form a + m where a is scalar and m is nonzero and nilpotent.

      def Matrix.IsHyperbolic {R : Type u_1} [CommRing R] [Preorder R] (m : Matrix (Fin 2) (Fin 2) R) :

      A 2 × 2 matrix is hyperbolic if its discriminant is strictly positive.

      Equations
      Instances For
        def Matrix.IsElliptic {R : Type u_1} [CommRing R] [Preorder R] (m : Matrix (Fin 2) (Fin 2) R) :

        A 2 × 2 matrix is elliptic if its discriminant is strictly negative.

        Equations
        Instances For
          theorem Matrix.isHyperbolic_conj_iff {R : Type u_1} [CommRing R] [Nontrivial R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
          theorem Matrix.isHyperbolic_conj'_iff {R : Type u_1} [CommRing R] [Nontrivial R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
          theorem Matrix.isElliptic_conj_iff {R : Type u_1} [CommRing R] [Nontrivial R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
          (g * m * g⁻¹).IsElliptic m.IsElliptic
          theorem Matrix.isElliptic_conj'_iff {R : Type u_1} [CommRing R] [Nontrivial R] [Preorder R] {m : Matrix (Fin 2) (Fin 2) R} (g : GL (Fin 2) R) :
          (g⁻¹ * m * g).IsElliptic m.IsElliptic
          @[reducible, inline]
          abbrev Matrix.GeneralLinearGroup.IsParabolic {R : Type u_1} [CommRing R] (g : GL (Fin 2) R) :

          Synonym of Matrix.IsParabolic, for dot-notation.

          Equations
          Instances For
            @[reducible, inline]
            abbrev Matrix.GeneralLinearGroup.IsElliptic {R : Type u_1} [CommRing R] [Preorder R] (g : GL (Fin 2) R) :

            Synonym of Matrix.IsElliptic, for dot-notation.

            Equations
            Instances For
              @[reducible, inline]

              Synonym of Matrix.IsHyperbolic, for dot-notation.

              Equations
              Instances For
                noncomputable def Matrix.GeneralLinearGroup.fixpointPolynomial {R : Type u_1} [CommRing R] (g : GL (Fin 2) R) :

                Polynomial whose roots are the fixed points of g considered as a Möbius transformation.

                See Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff.

                Equations
                Instances For

                  The fixed-point polynomial is identically zero iff g is scalar.

                  theorem Matrix.GeneralLinearGroup.IsParabolic.pow {K : Type u_2} [Field K] {g : GL (Fin 2) K} (hg : g.IsParabolic) [CharZero K] {n : } (hn : n 0) :

                  A non-zero power of a parabolic element is parabolic.