Permanent of a matrix #
This file defines the permanent of a matrix, Matrix.permanent
, and some of its properties.
Main definitions #
Matrix.permanent
: the permanent of a square matrix, as a sum over permutations
def
Matrix.permanent
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
(M : Matrix n n R)
:
R
The permanent of a square matrix defined as a sum over all permutations. This is analogous to the determinant but without alternating signs.
Equations
- M.permanent = ∑ σ : Equiv.Perm n, ∏ i : n, M (σ i) i
Instances For
@[simp]
theorem
Matrix.permanent_diagonal
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
{d : n → R}
:
(Matrix.diagonal d).permanent = ∏ i : n, d i
@[simp]
theorem
Matrix.permanent_zero
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
[Nonempty n]
:
Matrix.permanent 0 = 0
@[simp]
theorem
Matrix.permanent_one
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
:
Matrix.permanent 1 = 1
theorem
Matrix.permanent_isEmpty
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
[IsEmpty n]
{A : Matrix n n R}
:
A.permanent = 1
theorem
Matrix.permanent_eq_one_of_card_eq_zero
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
{A : Matrix n n R}
(h : Fintype.card n = 0)
:
A.permanent = 1
@[simp]
theorem
Matrix.permanent_unique
{R : Type u_2}
[CommSemiring R]
{n : Type u_3}
[Unique n]
[DecidableEq n]
[Fintype n]
(A : Matrix n n R)
:
A.permanent = A default default
If n
has only one element, the permanent of an n
by n
matrix is just that element.
Although Unique
implies DecidableEq
and Fintype
, the instances might
not be syntactically equal. Thus, we need to fill in the args explicitly.
theorem
Matrix.permanent_eq_elem_of_subsingleton
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
[Subsingleton n]
(A : Matrix n n R)
(k : n)
:
A.permanent = A k k
theorem
Matrix.permanent_eq_elem_of_card_eq_one
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
{A : Matrix n n R}
(h : Fintype.card n = 1)
(k : n)
:
A.permanent = A k k
@[simp]
theorem
Matrix.permanent_transpose
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
(M : Matrix n n R)
:
M.transpose.permanent = M.permanent
Transposing a matrix preserves the permanent.
theorem
Matrix.permanent_permute_cols
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
(σ : Equiv.Perm n)
(M : Matrix n n R)
:
(M.submatrix (⇑σ) id).permanent = M.permanent
Permuting the columns does not change the permanent.
theorem
Matrix.permanent_permute_rows
{n : Type u_1}
[DecidableEq n]
[Fintype n]
{R : Type u_2}
[CommSemiring R]
(σ : Equiv.Perm n)
(M : Matrix n n R)
:
(M.submatrix id ⇑σ).permanent = M.permanent
Permuting the rows does not change the permanent.