Tensor products of dual spaces #
Main definitions #
PiTensorProduct.dualDistrib: The canonical linear map from⨂[R] i, Dual R (M i)toDual R (⨂[R] i, M i), sending⨂ₜ[R] i, f ito the composition ofPiTensorProduct.map fwith the linear equivalence⨂[R] i, R →ₗ Rgiven by multiplication.PiTensorProduct.dualDistribEquiv: A linear equivalence between⨂[R] i, Dual R (M i)andDual R (⨂[R] i, M i)when allM iare finite free modules. Iff : (i : ι) → Dual R (M i), then this equivalence sends⨂ₜ[R] i, f ito the composition ofPiTensorProduct.map fwith the natural isomorphism⨂[R] i, R ≃ Rgiven by multiplication.
The canonical linear map from ⨂[R] i, Dual R (M i) to Dual R (⨂[R] i, M i),
sending ⨂ₜ[R] i, f i to the composition of PiTensorProduct.map f with
the linear equivalence ⨂[R] i, R →ₗ R given by multiplication.
Equations
Instances For
An inverse to PiTensorProduct.dualDistrib given bases.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A linear equivalence between ⨂[R] i, Dual R (M i) and Dual R (⨂[R] i, M i)
given bases for all M i. If f : (i : ι) → Dual R (s i), then this equivalence sends
⨂ₜ[R] i, f i to the composition of PiTensorProduct.map f with the natural
isomorphism ⨂[R] i, R ≃ R given by multipliccation (constantBaseRingEquiv).
Equations
Instances For
A linear equivalence between ⨂[R] i, Dual R (M i) and Dual R (⨂[R] i, M i) when all
M i are finite free modules. If f : (i : ι) → Dual R (M i), then this equivalence sends
⨂ₜ[R] i, f i to the composition of PiTensorProduct.map f with the natural
isomorphism ⨂[R] i, R ≃ R given by multipliccation (constantBaseRingEquiv).
Equations
- PiTensorProduct.dualDistribEquiv = PiTensorProduct.dualDistribEquivOfBasis fun (i : ι) => Module.Free.chooseBasis R (M i)