Dot Product and Cross Product on Projective Spaces #
This file defines the dot product and cross product on projective spaces.
Definitions #
Projectivization.orthogonal v w
is defined as vanishing of the dot product.Projectivization.cross v w
forv w : ℙ F (Fin 3 → F)
is defined as the cross product ofv
andw
provided thatv ≠ w
. Ifv = w
, then the cross product would be zero, so we instead definecross v v = v
.
def
Projectivization.orthogonal
{F : Type u_1}
[Field F]
{m : Type u_2}
[Fintype m]
:
Projectivization F (m → F) → Projectivization F (m → F) → Prop
Orthogonality on the projective plane.
Equations
- Projectivization.orthogonal = Quotient.lift₂ (fun (v w : { v : m → F // v ≠ 0 }) => ↑v ⬝ᵥ ↑w = 0) ⋯
Instances For
theorem
Projectivization.orthogonal_mk
{F : Type u_1}
[Field F]
{m : Type u_2}
[Fintype m]
{v w : m → F}
(hv : v ≠ 0)
(hw : w ≠ 0)
:
(Projectivization.mk F v hv).orthogonal (Projectivization.mk F w hw) ↔ v ⬝ᵥ w = 0
theorem
Projectivization.orthogonal_comm
{F : Type u_1}
[Field F]
{m : Type u_2}
[Fintype m]
{v w : Projectivization F (m → F)}
:
v.orthogonal w ↔ w.orthogonal v
theorem
Projectivization.exists_not_self_orthogonal
{F : Type u_1}
[Field F]
{m : Type u_2}
[Fintype m]
(v : Projectivization F (m → F))
:
∃ (w : Projectivization F (m → F)), ¬v.orthogonal w
theorem
Projectivization.exists_not_orthogonal_self
{F : Type u_1}
[Field F]
{m : Type u_2}
[Fintype m]
(v : Projectivization F (m → F))
:
∃ (w : Projectivization F (m → F)), ¬w.orthogonal v
theorem
Projectivization.mk_eq_mk_iff_crossProduct_eq_zero
{F : Type u_1}
[Field F]
{v w : Fin 3 → F}
(hv : v ≠ 0)
(hw : w ≠ 0)
:
Projectivization.mk F v hv = Projectivization.mk F w hw ↔ (crossProduct v) w = 0
def
Projectivization.cross
{F : Type u_1}
[Field F]
[DecidableEq F]
:
Projectivization F (Fin 3 → F) → Projectivization F (Fin 3 → F) → Projectivization F (Fin 3 → F)
Cross product on the projective plane.
Equations
- Projectivization.cross = Quotient.map₂ (fun (v w : { v : Fin 3 → F // v ≠ 0 }) => if h : (crossProduct ↑v) ↑w = 0 then v else ⟨(crossProduct ↑v) ↑w, h⟩) ⋯
Instances For
theorem
Projectivization.cross_mk
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Fin 3 → F}
(hv : v ≠ 0)
(hw : w ≠ 0)
:
(Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = if h : (crossProduct v) w = 0 then Projectivization.mk F v hv else Projectivization.mk F ((crossProduct v) w) h
theorem
Projectivization.cross_mk_of_cross_eq_zero
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Fin 3 → F}
(hv : v ≠ 0)
(hw : w ≠ 0)
(h : (crossProduct v) w = 0)
:
(Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = Projectivization.mk F v hv
theorem
Projectivization.cross_mk_of_cross_ne_zero
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Fin 3 → F}
(hv : v ≠ 0)
(hw : w ≠ 0)
(h : (crossProduct v) w ≠ 0)
:
(Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = Projectivization.mk F ((crossProduct v) w) h
theorem
Projectivization.cross_self
{F : Type u_1}
[Field F]
[DecidableEq F]
(v : Projectivization F (Fin 3 → F))
:
v.cross v = v
theorem
Projectivization.cross_mk_of_ne
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Fin 3 → F}
(hv : v ≠ 0)
(hw : w ≠ 0)
(h : Projectivization.mk F v hv ≠ Projectivization.mk F w hw)
:
(Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = Projectivization.mk F ((crossProduct v) w) ⋯
theorem
Projectivization.cross_comm
{F : Type u_1}
[Field F]
[DecidableEq F]
(v w : Projectivization F (Fin 3 → F))
:
v.cross w = w.cross v
theorem
Projectivization.cross_orthogonal_left
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Projectivization F (Fin 3 → F)}
(h : v ≠ w)
:
(v.cross w).orthogonal v
theorem
Projectivization.cross_orthogonal_right
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Projectivization F (Fin 3 → F)}
(h : v ≠ w)
:
(v.cross w).orthogonal w
theorem
Projectivization.orthogonal_cross_left
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Projectivization F (Fin 3 → F)}
(h : v ≠ w)
:
v.orthogonal (v.cross w)
theorem
Projectivization.orthogonal_cross_right
{F : Type u_1}
[Field F]
[DecidableEq F]
{v w : Projectivization F (Fin 3 → F)}
(h : v ≠ w)
:
w.orthogonal (v.cross w)