Documentation

Mathlib.LinearAlgebra.QuadraticForm.Prod

Quadratic form on product and pi types #

Main definitions #

Main results #

Implementation notes #

Many of the lemmas in this file could be generalized into results about sums of positive and non-negative elements, and would generalize to any map Q where Q 0 = 0, not just quadratic forms specifically.

def QuadraticMap.prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) :
QuadraticMap R (M₁ × M₂) P

Construct a quadratic form on a product of two modules from the quadratic form on each module.

Equations
Instances For
    @[simp]
    theorem QuadraticMap.prod_apply {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (a : M₁ × M₂) :
    (Q₁.prod Q₂) a = Q₁ a.1 + Q₂ a.2
    def QuadraticMap.IsometryEquiv.prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {N₁ : Type u_5} {N₂ : Type u_6} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R N₁] [Module R N₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} {Q₁' : QuadraticMap R N₁ P} {Q₂' : QuadraticMap R N₂ P} (e₁ : Q₁.IsometryEquiv Q₁') (e₂ : Q₂.IsometryEquiv Q₂') :
    (Q₁.prod Q₂).IsometryEquiv (Q₁'.prod Q₂')

    An isometry between quadratic forms generated by QuadraticForm.prod can be constructed from a pair of isometries between the left and right parts.

    Equations
    • e₁.prod e₂ = { toLinearEquiv := e₁.prod e₂.toLinearEquiv, map_app' := }
    Instances For
      @[simp]
      theorem QuadraticMap.IsometryEquiv.prod_toLinearEquiv {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {N₁ : Type u_5} {N₂ : Type u_6} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R N₁] [Module R N₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} {Q₁' : QuadraticMap R N₁ P} {Q₂' : QuadraticMap R N₂ P} (e₁ : Q₁.IsometryEquiv Q₁') (e₂ : Q₂.IsometryEquiv Q₂') :
      (e₁.prod e₂).toLinearEquiv = e₁.prod e₂.toLinearEquiv
      def QuadraticMap.Isometry.inl {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) :
      Q₁ →qᵢ Q₁.prod Q₂

      LinearMap.inl as an isometry.

      Equations
      Instances For
        @[simp]
        theorem QuadraticMap.Isometry.inl_apply {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (i : M₁) :
        (inl Q₁ Q₂) i = (i, 0)
        def QuadraticMap.Isometry.inr {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) :
        Q₂ →qᵢ Q₁.prod Q₂

        LinearMap.inr as an isometry.

        Equations
        Instances For
          @[simp]
          theorem QuadraticMap.Isometry.inr_apply {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (i : M₂) :
          (inr Q₁ Q₂) i = (0, i)
          def QuadraticMap.Isometry.fst {R : Type u_2} {M₁ : Type u_3} (M₂ : Type u_4) {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) :
          Q₁.prod 0 →qᵢ Q₁

          LinearMap.fst as an isometry, when the second space has the zero quadratic form.

          Equations
          Instances For
            @[simp]
            theorem QuadraticMap.Isometry.fst_apply {R : Type u_2} {M₁ : Type u_3} (M₂ : Type u_4) {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (self : M₁ × M₂) :
            (fst M₂ Q₁) self = self.1
            def QuadraticMap.Isometry.snd {R : Type u_2} (M₁ : Type u_3) {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₂ : QuadraticMap R M₂ P) :
            prod 0 Q₂ →qᵢ Q₂

            LinearMap.snd as an isometry, when the first space has the zero quadratic form.

            Equations
            Instances For
              @[simp]
              theorem QuadraticMap.Isometry.snd_apply {R : Type u_2} (M₁ : Type u_3) {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₂ : QuadraticMap R M₂ P) (self : M₁ × M₂) :
              (snd M₁ Q₂) self = self.2
              @[simp]
              theorem QuadraticMap.Isometry.fst_comp_inl {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) :
              (fst M₂ Q₁).comp (inl Q₁ 0) = id Q₁
              @[simp]
              theorem QuadraticMap.Isometry.snd_comp_inr {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₂ : QuadraticMap R M₂ P) :
              (snd M₁ Q₂).comp (inr 0 Q₂) = id Q₂
              @[simp]
              theorem QuadraticMap.Isometry.snd_comp_inl {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₂ : QuadraticMap R M₂ P) :
              (snd M₁ Q₂).comp (inl 0 Q₂) = 0
              @[simp]
              theorem QuadraticMap.Isometry.fst_comp_inr {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) :
              (fst M₂ Q₁).comp (inr Q₁ 0) = 0
              theorem QuadraticMap.Equivalent.prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {N₁ : Type u_5} {N₂ : Type u_6} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R N₁] [Module R N₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} {Q₁' : QuadraticMap R N₁ P} {Q₂' : QuadraticMap R N₂ P} (e₁ : Q₁.Equivalent Q₁') (e₂ : Q₂.Equivalent Q₂') :
              (Q₁.prod Q₂).Equivalent (Q₁'.prod Q₂')
              def QuadraticMap.IsometryEquiv.prodComm {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) :
              (Q₁.prod Q₂).IsometryEquiv (Q₂.prod Q₁)

              LinearEquiv.prodComm is isometric.

              Equations
              Instances For
                @[simp]
                theorem QuadraticMap.IsometryEquiv.prodComm_toFun {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (a✝ : M₁ × M₂) :
                (prodComm Q₁ Q₂) a✝ = a✝.swap
                @[simp]
                theorem QuadraticMap.IsometryEquiv.prodComm_invFun {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (a✝ : M₂ × M₁) :
                (prodComm Q₁ Q₂).invFun a✝ = a✝.swap
                def QuadraticMap.IsometryEquiv.prodProdProdComm {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {N₁ : Type u_5} {N₂ : Type u_6} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R N₁] [Module R N₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (Q₃ : QuadraticMap R N₁ P) (Q₄ : QuadraticMap R N₂ P) :
                ((Q₁.prod Q₂).prod (Q₃.prod Q₄)).IsometryEquiv ((Q₁.prod Q₃).prod (Q₂.prod Q₄))

                LinearEquiv.prodProdProdComm is isometric.

                Equations
                Instances For
                  @[simp]
                  theorem QuadraticMap.IsometryEquiv.prodProdProdComm_invFun {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {N₁ : Type u_5} {N₂ : Type u_6} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R N₁] [Module R N₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (Q₃ : QuadraticMap R N₁ P) (Q₄ : QuadraticMap R N₂ P) (mmnn : (M₁ × N₁) × M₂ × N₂) :
                  (prodProdProdComm Q₁ Q₂ Q₃ Q₄).invFun mmnn = ((mmnn.1.1, mmnn.2.1), mmnn.1.2, mmnn.2.2)
                  @[simp]
                  theorem QuadraticMap.IsometryEquiv.prodProdProdComm_toFun {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {N₁ : Type u_5} {N₂ : Type u_6} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R N₁] [Module R N₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (Q₃ : QuadraticMap R N₁ P) (Q₄ : QuadraticMap R N₂ P) (mnmn : (M₁ × M₂) × N₁ × N₂) :
                  (prodProdProdComm Q₁ Q₂ Q₃ Q₄) mnmn = ((mnmn.1.1, mnmn.2.1), mnmn.1.2, mnmn.2.2)
                  theorem QuadraticMap.anisotropic_of_prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} (h : (Q₁.prod Q₂).Anisotropic) :
                  Q₁.Anisotropic Q₂.Anisotropic

                  If a product is anisotropic then its components must be. The converse is not true.

                  theorem QuadraticMap.nonneg_prod_iff {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] [Preorder P] [AddLeftMono P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} :
                  (∀ (x : M₁ × M₂), 0 (Q₁.prod Q₂) x) (∀ (x : M₁), 0 Q₁ x) ∀ (x : M₂), 0 Q₂ x
                  theorem QuadraticMap.posDef_prod_iff {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] [PartialOrder P] [AddLeftMono P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} :
                  (Q₁.prod Q₂).PosDef Q₁.PosDef Q₂.PosDef
                  theorem QuadraticMap.PosDef.prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] [PartialOrder P] [AddLeftMono P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} (h₁ : Q₁.PosDef) (h₂ : Q₂.PosDef) :
                  (Q₁.prod Q₂).PosDef
                  theorem QuadraticMap.IsOrtho.prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} {v w : M₁ × M₂} (h₁ : Q₁.IsOrtho v.1 w.1) (h₂ : Q₂.IsOrtho v.2 w.2) :
                  (Q₁.prod Q₂).IsOrtho v w
                  @[simp]
                  theorem QuadraticMap.IsOrtho.inl_inr {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} (m₁ : M₁) (m₂ : M₂) :
                  (Q₁.prod Q₂).IsOrtho (m₁, 0) (0, m₂)
                  @[simp]
                  theorem QuadraticMap.IsOrtho.inr_inl {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} (m₁ : M₁) (m₂ : M₂) :
                  (Q₁.prod Q₂).IsOrtho (0, m₂) (m₁, 0)
                  @[simp]
                  theorem QuadraticMap.isOrtho_inl_inl_iff {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} (m₁ m₁' : M₁) :
                  (Q₁.prod Q₂).IsOrtho (m₁, 0) (m₁', 0) Q₁.IsOrtho m₁ m₁'
                  @[simp]
                  theorem QuadraticMap.isOrtho_inr_inr_iff {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid P] [Module R M₁] [Module R M₂] [Module R P] {Q₁ : QuadraticMap R M₁ P} {Q₂ : QuadraticMap R M₂ P} (m₂ m₂' : M₂) :
                  (Q₁.prod Q₂).IsOrtho (0, m₂) (0, m₂') Q₂.IsOrtho m₂ m₂'
                  @[simp]
                  theorem QuadraticMap.polar_prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommRing R] [AddCommGroup M₁] [AddCommGroup M₂] [AddCommGroup P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) (x y : M₁ × M₂) :
                  polar (⇑(Q₁.prod Q₂)) x y = polar (⇑Q₁) x.1 y.1 + polar (⇑Q₂) x.2 y.2
                  @[simp]
                  theorem QuadraticMap.polarBilin_prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommRing R] [AddCommGroup M₁] [AddCommGroup M₂] [AddCommGroup P] [Module R M₁] [Module R M₂] [Module R P] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) :
                  (Q₁.prod Q₂).polarBilin = LinearMap.compl₁₂ Q₁.polarBilin (LinearMap.fst R M₁ M₂) (LinearMap.fst R M₁ M₂) + LinearMap.compl₁₂ Q₂.polarBilin (LinearMap.snd R M₁ M₂) (LinearMap.snd R M₁ M₂)
                  @[simp]
                  theorem QuadraticMap.associated_prod {R : Type u_2} {M₁ : Type u_3} {M₂ : Type u_4} {P : Type u_7} [CommRing R] [AddCommGroup M₁] [AddCommGroup M₂] [AddCommGroup P] [Module R M₁] [Module R M₂] [Module R P] [Invertible 2] (Q₁ : QuadraticMap R M₁ P) (Q₂ : QuadraticMap R M₂ P) :
                  associated (Q₁.prod Q₂) = LinearMap.compl₁₂ (associated Q₁) (LinearMap.fst R M₁ M₂) (LinearMap.fst R M₁ M₂) + LinearMap.compl₁₂ (associated Q₂) (LinearMap.snd R M₁ M₂) (LinearMap.snd R M₁ M₂)
                  def QuadraticMap.pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) :
                  QuadraticMap R ((i : ι) → Mᵢ i) P

                  Construct a quadratic form on a family of modules from the quadratic form on each module.

                  Equations
                  Instances For
                    @[simp]
                    theorem QuadraticMap.pi_apply {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) (x : (i : ι) → Mᵢ i) :
                    (pi Q) x = i : ι, (Q i) (x i)
                    theorem QuadraticMap.pi_apply_single {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) (i : ι) (m : Mᵢ i) :
                    (pi Q) (Pi.single i m) = (Q i) m
                    def QuadraticMap.IsometryEquiv.pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} {Nᵢ : ιType u_9} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [(i : ι) → AddCommMonoid (Nᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [(i : ι) → Module R (Nᵢ i)] [Module R P] [Fintype ι] {Q : (i : ι) → QuadraticMap R (Mᵢ i) P} {Q' : (i : ι) → QuadraticMap R (Nᵢ i) P} (e : (i : ι) → (Q i).IsometryEquiv (Q' i)) :
                    (QuadraticMap.pi Q).IsometryEquiv (QuadraticMap.pi Q')

                    An isometry between quadratic forms generated by QuadraticMap.pi can be constructed from a pair of isometries between the left and right parts.

                    Equations
                    Instances For
                      @[simp]
                      theorem QuadraticMap.IsometryEquiv.pi_toLinearEquiv {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} {Nᵢ : ιType u_9} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [(i : ι) → AddCommMonoid (Nᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [(i : ι) → Module R (Nᵢ i)] [Module R P] [Fintype ι] {Q : (i : ι) → QuadraticMap R (Mᵢ i) P} {Q' : (i : ι) → QuadraticMap R (Nᵢ i) P} (e : (i : ι) → (Q i).IsometryEquiv (Q' i)) :
                      (pi e).toLinearEquiv = LinearEquiv.piCongrRight fun (i : ι) => (e i).toLinearEquiv
                      def QuadraticMap.Isometry.single {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) (i : ι) :
                      Q i →qᵢ pi Q

                      LinearMap.single as an isometry.

                      Equations
                      Instances For
                        @[simp]
                        theorem QuadraticMap.Isometry.single_apply {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) (i : ι) (x : Mᵢ i) (j : ι) :
                        (single Q i) x j = Pi.single i x j
                        def QuadraticMap.Isometry.proj {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] (i : ι) (Q : QuadraticMap R (Mᵢ i) P) :

                        LinearMap.proj as an isometry, when all but one quadratic form is zero.

                        Equations
                        Instances For
                          @[simp]
                          theorem QuadraticMap.Isometry.proj_apply {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] (i : ι) (Q : QuadraticMap R (Mᵢ i) P) (f : (x : ι) → Mᵢ x) :
                          (proj i Q) f = f i
                          @[simp]
                          theorem QuadraticMap.Isometry.proj_comp_single_of_same {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] (i : ι) (Q : QuadraticMap R (Mᵢ i) P) :
                          (proj i Q).comp (single (Pi.single i Q) i) = ofEq

                          Note that QuadraticMap.Isometry.id would not be well-typed as the RHS.

                          @[simp]
                          theorem QuadraticMap.Isometry.proj_comp_single_of_ne {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [DecidableEq ι] {i j : ι} (h : i j) (Q : QuadraticMap R (Mᵢ i) P) :
                          (proj i Q).comp (single (Pi.single i Q) j) = comp 0 (ofEq )

                          Note that 0 : 0 →qᵢ Q alone would not be well-typed as the RHS.

                          theorem QuadraticMap.Equivalent.pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} {Nᵢ : ιType u_9} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [(i : ι) → AddCommMonoid (Nᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [(i : ι) → Module R (Nᵢ i)] [Module R P] [Fintype ι] {Q : (i : ι) → QuadraticMap R (Mᵢ i) P} {Q' : (i : ι) → QuadraticMap R (Nᵢ i) P} (e : ∀ (i : ι), (Q i).Equivalent (Q' i)) :
                          (QuadraticMap.pi Q).Equivalent (QuadraticMap.pi Q')
                          theorem QuadraticMap.anisotropic_of_pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [AddCommMonoid P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] {Q : (i : ι) → QuadraticMap R (Mᵢ i) P} (h : (pi Q).Anisotropic) (i : ι) :
                          (Q i).Anisotropic

                          If a family is anisotropic then its components must be. The converse is not true.

                          theorem QuadraticMap.nonneg_pi_iff {ι : Type u_1} {R : Type u_2} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [(i : ι) → Module R (Mᵢ i)] {P : Type u_10} [Fintype ι] [OrderedAddCommMonoid P] [Module R P] {Q : (i : ι) → QuadraticMap R (Mᵢ i) P} :
                          (∀ (x : (i : ι) → Mᵢ i), 0 (pi Q) x) ∀ (i : ι) (x : Mᵢ i), 0 (Q i) x
                          theorem QuadraticMap.posDef_pi_iff {ι : Type u_1} {R : Type u_2} {Mᵢ : ιType u_8} [CommSemiring R] [(i : ι) → AddCommMonoid (Mᵢ i)] [(i : ι) → Module R (Mᵢ i)] {P : Type u_10} [Fintype ι] [OrderedAddCommMonoid P] [Module R P] {Q : (i : ι) → QuadraticMap R (Mᵢ i) P} :
                          (pi Q).PosDef ∀ (i : ι), (Q i).PosDef
                          @[simp]
                          theorem QuadraticMap.Ring.polar_pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommRing R] [(i : ι) → AddCommGroup (Mᵢ i)] [AddCommGroup P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) (x y : (i : ι) → Mᵢ i) :
                          polar (⇑(pi Q)) x y = i : ι, polar (⇑(Q i)) (x i) (y i)
                          @[simp]
                          theorem QuadraticMap.Ring.polarBilin_pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommRing R] [(i : ι) → AddCommGroup (Mᵢ i)] [AddCommGroup P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) :
                          (pi Q).polarBilin = i : ι, LinearMap.compl₁₂ (Q i).polarBilin (LinearMap.proj i) (LinearMap.proj i)
                          @[simp]
                          theorem QuadraticMap.Ring.associated_pi {ι : Type u_1} {R : Type u_2} {P : Type u_7} {Mᵢ : ιType u_8} [CommRing R] [(i : ι) → AddCommGroup (Mᵢ i)] [AddCommGroup P] [(i : ι) → Module R (Mᵢ i)] [Module R P] [Fintype ι] [Invertible 2] (Q : (i : ι) → QuadraticMap R (Mᵢ i) P) :
                          associated (pi Q) = i : ι, LinearMap.compl₁₂ (associated (Q i)) (LinearMap.proj i) (LinearMap.proj i)