The monoidal category structure on quadratic R-modules #
The monoidal structure is simply the structure on the underlying modules, where the tensor product
of two modules is equipped with the form constructed via QuadraticForm.tmul
.
As with the monoidal structure on ModuleCat
,
the universe level of the modules must be at least the universe level of the ring,
so that we have a monoidal unit.
For now, we simplify by insisting both universe levels are the same.
Implementation notes #
This file essentially mirrors Mathlib/Algebra/Category/AlgebraCat/Monoidal.lean
.
@[reducible, inline]
noncomputable abbrev
QuadraticModuleCat.instMonoidalCategory.tensorObj
{R : Type u}
[CommRing R]
[Invertible 2]
(X Y : QuadraticModuleCat R)
:
Auxiliary definition used to build QuadraticModuleCat.instMonoidalCategory
.
Equations
- QuadraticModuleCat.instMonoidalCategory.tensorObj X Y = QuadraticModuleCat.of (X.form.tmul Y.form)
Instances For
@[simp]
theorem
QuadraticModuleCat.instMonoidalCategory.tensorObj_form
{R : Type u}
[CommRing R]
[Invertible 2]
(X Y : QuadraticModuleCat R)
:
@[reducible, inline]
noncomputable abbrev
QuadraticModuleCat.instMonoidalCategory.tensorHom
{R : Type u}
[CommRing R]
[Invertible 2]
{W X Y Z : QuadraticModuleCat R}
(f : W ⟶ X)
(g : Y ⟶ Z)
:
Auxiliary definition used to build QuadraticModuleCat.instMonoidalCategory
.
We want this up front so that we can re-use it to define whiskerLeft
and whiskerRight
.
Equations
- QuadraticModuleCat.instMonoidalCategory.tensorHom f g = { toIsometry := f.toIsometry.tmul g.toIsometry }
Instances For
noncomputable instance
QuadraticModuleCat.instMonoidalCategoryStruct
{R : Type u}
[CommRing R]
[Invertible 2]
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
QuadraticModuleCat.toModuleCat_tensor
{R : Type u}
[CommRing R]
[Invertible 2]
(X Y : QuadraticModuleCat R)
:
(CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).toModuleCat = CategoryTheory.MonoidalCategoryStruct.tensorObj X.toModuleCat Y.toModuleCat
theorem
QuadraticModuleCat.forget₂_map_associator_hom
{R : Type u}
[CommRing R]
[Invertible 2]
(X Y Z : QuadraticModuleCat R)
:
(CategoryTheory.forget₂ (QuadraticModuleCat R) (ModuleCat R)).map
(CategoryTheory.MonoidalCategoryStruct.associator X Y Z).hom = (CategoryTheory.MonoidalCategoryStruct.associator X.toModuleCat Y.toModuleCat Z.toModuleCat).hom
theorem
QuadraticModuleCat.forget₂_map_associator_inv
{R : Type u}
[CommRing R]
[Invertible 2]
(X Y Z : QuadraticModuleCat R)
:
(CategoryTheory.forget₂ (QuadraticModuleCat R) (ModuleCat R)).map
(CategoryTheory.MonoidalCategoryStruct.associator X Y Z).inv = (CategoryTheory.MonoidalCategoryStruct.associator X.toModuleCat Y.toModuleCat Z.toModuleCat).inv
noncomputable instance
QuadraticModuleCat.instMonoidalCategory
{R : Type u}
[CommRing R]
[Invertible 2]
:
Equations
- One or more equations did not get rendered due to their size.