Reduced root pairings #
This file contains basic definitions and results related to reduced root pairings.
Main definitions: #
RootPairing.IsReduced
: A root pairing is said to be reduced if two linearly dependent roots are always related by a sign.RootPairing.linInd_iff_coxeterWeight_ne_four
: for a finite root pairing, two roots are linearly independent iff their Coxeter weight is not four.
def
RootPairing.IsReduced
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
A root pairing is said to be reduced if any linearly dependent pair of roots is related by a sign.
Equations
Instances For
theorem
RootPairing.isReduced_iff
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
theorem
RootPairing.infinite_of_linInd_coxeterWeight_four
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{i j : ι}
[NeZero 2]
[NoZeroSMulDivisors ℤ M]
(hl : LinearIndependent R ![P.root i, P.root j])
(hc : P.coxeterWeight i j = 4)
:
Infinite ι
theorem
RootPairing.pairing_smul_root_eq_of_not_linInd
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{i j : ι}
[NeZero 2]
[NoZeroSMulDivisors R M]
(h : ¬LinearIndependent R ![P.root i, P.root j])
:
theorem
RootPairing.coxeterWeight_ne_four_of_linearIndependent
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{i j : ι}
[Finite ι]
[NeZero 2]
[NoZeroSMulDivisors ℤ M]
(hl : LinearIndependent R ![P.root i, P.root j])
:
theorem
RootPairing.linearIndependent_iff_coxeterWeight_ne_four
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{i j : ι}
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
:
theorem
RootPairing.coxeterWeight_eq_four_iff_not_linearIndependent
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{i j : ι}
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
:
@[simp]
theorem
RootPairing.pairing_two_two_iff
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
(i j : ι)
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
:
@[simp]
theorem
RootPairing.pairing_neg_two_neg_two_iff
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
(i j : ι)
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
:
theorem
RootPairing.pairing_one_four_iff'
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
(i j : ι)
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(h2 : IsSMulRegular R 2)
:
theorem
RootPairing.pairing_neg_one_neg_four_iff'
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
(i j : ι)
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(h2 : IsSMulRegular R 2)
:
@[simp]
theorem
RootPairing.pairing_one_four_iff
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
(i j : ι)
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
[NoZeroDivisors R]
:
@[simp]
theorem
RootPairing.pairing_neg_one_neg_four_iff
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
(i j : ι)
[Finite ι]
[CharZero R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
[NoZeroDivisors R]
: