Documentation

Mathlib.LinearAlgebra.RootSystem.Reduced

Reduced root pairings #

This file contains basic definitions and results related to reduced root pairings.

Main definitions: #

def RootPairing.IsReduced {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :

A root pairing is said to be reduced if any linearly dependent pair of roots is related by a sign.

Equations
Instances For
    theorem RootPairing.isReduced_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
    P.IsReduced ∀ (i j : ι), i j¬LinearIndependent R ![P.root i, P.root j]P.root i = -P.root j
    theorem RootPairing.infinite_of_linInd_coxeterWeight_four {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) {i j : ι} [NeZero 2] [NoZeroSMulDivisors M] (hl : LinearIndependent R ![P.root i, P.root j]) (hc : P.coxeterWeight i j = 4) :
    theorem RootPairing.pairing_smul_root_eq_of_not_linInd {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) {i j : ι} [NeZero 2] [NoZeroSMulDivisors R M] (h : ¬LinearIndependent R ![P.root i, P.root j]) :
    P.pairing j i P.root i = 2 P.root j
    theorem RootPairing.coxeterWeight_ne_four_of_linearIndependent {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) {i j : ι} [Finite ι] [NeZero 2] [NoZeroSMulDivisors M] (hl : LinearIndependent R ![P.root i, P.root j]) :
    theorem RootPairing.linearIndependent_iff_coxeterWeight_ne_four {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) {i j : ι} [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] :
    theorem RootPairing.coxeterWeight_eq_four_iff_not_linearIndependent {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) {i j : ι} [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] :
    @[simp]
    theorem RootPairing.pairing_two_two_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i j : ι) [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] :
    P.pairing i j = 2 P.pairing j i = 2 i = j
    @[simp]
    theorem RootPairing.pairing_neg_two_neg_two_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i j : ι) [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] :
    P.pairing i j = -2 P.pairing j i = -2 P.root i = -P.root j
    theorem RootPairing.pairing_one_four_iff' {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i j : ι) [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (h2 : IsSMulRegular R 2) :
    P.pairing i j = 1 P.pairing j i = 4 P.root j = 2 P.root i
    theorem RootPairing.pairing_neg_one_neg_four_iff' {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i j : ι) [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (h2 : IsSMulRegular R 2) :
    P.pairing i j = -1 P.pairing j i = -4 P.root j = -2 P.root i
    @[simp]
    theorem RootPairing.pairing_one_four_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i j : ι) [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] [NoZeroDivisors R] :
    P.pairing i j = 1 P.pairing j i = 4 P.root j = 2 P.root i
    @[simp]
    theorem RootPairing.pairing_neg_one_neg_four_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i j : ι) [Finite ι] [CharZero R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] [NoZeroDivisors R] :
    P.pairing i j = -1 P.pairing j i = -4 P.root j = -2 P.root i