Sesquilinear forms over a star ring #
This file provides some properties about sesquilinear forms M →ₗ⋆[R] M →ₗ[R] R when R is a
StarRing.
theorem
LinearMap.isSymm_iff_basis
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid M]
[Module R M]
{B : M →ₗ⋆[R] M →ₗ[R] R}
{ι : Type u_4}
(b : Module.Basis ι R M)
:
theorem
LinearMap.isSymm_iff_isHermitian_toMatrix
{R : Type u_1}
{M : Type u_2}
{n : Type u_3}
[CommSemiring R]
[StarRing R]
[AddCommMonoid M]
[Module R M]
[Fintype n]
[DecidableEq n]
{B : M →ₗ⋆[R] M →ₗ[R] R}
(b : Module.Basis n R M)
:
theorem
star_dotProduct_toMatrix₂_mulVec
{R : Type u_1}
{M : Type u_2}
{n : Type u_3}
[CommSemiring R]
[StarRing R]
[AddCommMonoid M]
[Module R M]
[Fintype n]
[DecidableEq n]
{B : M →ₗ⋆[R] M →ₗ[R] R}
(b : Module.Basis n R M)
(x y : n → R)
:
theorem
apply_eq_star_dotProduct_toMatrix₂_mulVec
{R : Type u_1}
{M : Type u_2}
{n : Type u_3}
[CommSemiring R]
[StarRing R]
[AddCommMonoid M]
[Module R M]
[Fintype n]
[DecidableEq n]
{B : M →ₗ⋆[R] M →ₗ[R] R}
(b : Module.Basis n R M)
(x y : M)
:
theorem
LinearMap.isPosSemidef_iff_posSemidef_toMatrix
{M : Type u_2}
{n : Type u_3}
[AddCommMonoid M]
[Fintype n]
[DecidableEq n]
{R : Type u_4}
[CommRing R]
[StarRing R]
[PartialOrder R]
[Module R M]
{B : M →ₗ⋆[R] M →ₗ[R] R}
(b : Module.Basis n R M)
: