Documentation

Mathlib.LinearAlgebra.TensorAlgebra.Basis

A basis for TensorAlgebra R M #

Main definitions #

Main results #

noncomputable def TensorAlgebra.equivFreeAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

A basis provides an algebra isomorphism with the free algebra, replacing each basis vector with its index.

Equations
Instances For
    @[simp]
    theorem TensorAlgebra.equivFreeAlgebra_ι_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (i : κ) :
    @[simp]
    theorem TensorAlgebra.equivFreeAlgebra_symm_ι {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (i : κ) :
    noncomputable def Basis.tensorAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

    A basis on M can be lifted to a basis on TensorAlgebra R M

    Equations
    Instances For
      @[simp]
      theorem Basis.tensorAlgebra_repr_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (a✝ : TensorAlgebra R M) :
      b.tensorAlgebra.repr a✝ = (FreeAlgebra.basisFreeMonoid R κ).repr ((TensorAlgebra.equivFreeAlgebra b) a✝)

      TensorAlgebra R M is free when M is.

      Equations
      • =

      The TensorAlgebra of a free module over a commutative semiring with no zero-divisors has no zero-divisors.

      Equations
      • =
      instance TensorAlgebra.instIsDomain {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] [IsDomain R] [Module.Free R M] :

      The TensorAlgebra of a free module over an integral domain is a domain.

      Equations
      • =