Documentation

Mathlib.LinearAlgebra.TensorAlgebra.ToTensorPower

Tensor algebras as direct sums of tensor powers #

In this file we show that TensorAlgebra R M is isomorphic to a direct sum of tensor powers, as TensorAlgebra.equivDirectSum.

noncomputable def TensorPower.toTensorAlgebra {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } :

The canonical embedding from a tensor power to the tensor algebra

Equations
Instances For
    @[simp]
    theorem TensorPower.toTensorAlgebra_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
    toTensorAlgebra ((PiTensorProduct.tprod R) x) = (TensorAlgebra.tprod R M n) x
    @[simp]
    theorem TensorPower.toTensorAlgebra_gOne {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :
    toTensorAlgebra GradedMonoid.GOne.one = 1
    @[simp]
    theorem TensorPower.toTensorAlgebra_gMul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {i j : } (a : TensorPower R i M) (b : TensorPower R j M) :
    toTensorAlgebra (GradedMonoid.GMul.mul a b) = toTensorAlgebra a * toTensorAlgebra b
    @[simp]
    theorem TensorPower.toTensorAlgebra_galgebra_toFun {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (r : R) :
    toTensorAlgebra (DirectSum.GAlgebra.toFun r) = (algebraMap R (TensorAlgebra R M)) r
    noncomputable def TensorAlgebra.ofDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :

    The canonical map from a direct sum of tensor powers to the tensor algebra.

    Equations
    Instances For
      @[simp]
      theorem TensorAlgebra.ofDirectSum_of_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
      ofDirectSum ((DirectSum.of (fun (n : ) => TensorPower R n M) n) ((PiTensorProduct.tprod R) x)) = (tprod R M n) x
      noncomputable def TensorAlgebra.toDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :

      The canonical map from the tensor algebra to a direct sum of tensor powers.

      Equations
      Instances For
        @[simp]
        theorem TensorAlgebra.toDirectSum_ι {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (x : M) :
        toDirectSum ((ι R) x) = (DirectSum.of (fun (n : ) => TensorPower R n M) 1) ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x)
        @[simp]
        theorem TensorAlgebra.ofDirectSum_toDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (x : TensorAlgebra R M) :
        ofDirectSum (toDirectSum x) = x
        @[simp]
        theorem TensorAlgebra.mk_reindex_cast {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n m : } (h : n = m) (x : TensorPower R n M) :
        @[simp]
        theorem TensorAlgebra.mk_reindex_fin_cast {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n m : } (h : n = m) (x : TensorPower R n M) :
        theorem TensorPower.list_prod_gradedMonoid_mk_single {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (n : ) (x : Fin nM) :
        (List.map (fun (a : Fin n) => GradedMonoid.mk 1 ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x a)) (List.finRange n)).prod = GradedMonoid.mk n ((PiTensorProduct.tprod R) x)

        The product of tensor products made of a single vector is the same as a single product of all the vectors.

        theorem TensorAlgebra.toDirectSum_tensorPower_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
        toDirectSum ((tprod R M n) x) = (DirectSum.of (fun (i : ) => TensorPower R i M) n) ((PiTensorProduct.tprod R) x)
        @[simp]
        theorem TensorAlgebra.toDirectSum_ofDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (x : DirectSum fun (n : ) => TensorPower R n M) :
        toDirectSum (ofDirectSum x) = x
        noncomputable def TensorAlgebra.equivDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :

        The tensor algebra is isomorphic to a direct sum of tensor powers.

        Equations
        Instances For
          @[simp]
          theorem TensorAlgebra.equivDirectSum_symm_apply {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (a : DirectSum fun (n : ) => TensorPower R n M) :
          equivDirectSum.symm a = ofDirectSum a
          @[simp]
          theorem TensorAlgebra.equivDirectSum_apply {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (a : TensorAlgebra R M) :
          equivDirectSum a = toDirectSum a