Documentation

Mathlib.LinearAlgebra.TensorProduct.Free

Tensor product with free modules. #

This file contains lemmas about tensoring with free modules.

noncomputable def Algebra.TensorProduct.equivPiOfFiniteBasis {R : Type u_1} (A : Type u_2) {V : Type u_3} [CommSemiring A] [CommSemiring R] [Algebra R A] [AddCommGroup V] [Module R V] {ι : Type u_4} (b : Module.Basis ι R V) [Finite ι] :
TensorProduct R A V ≃ₗ[A] ιA

The A-algebra isomorphism A ⊗[R] V ≃ₗ[A] (ι → A) coming from an ι-indexed basis of a finite free R-module V.

Equations
Instances For
    @[simp]
    theorem Algebra.TensorProduct.equivPiOfFiniteBasis_symm_apply {R : Type u_1} (A : Type u_2) {V : Type u_3} [CommSemiring A] [CommSemiring R] [Algebra R A] [AddCommGroup V] [Module R V] {ι : Type u_4} (b : Module.Basis ι R V) [Finite ι] (a✝ : ιA) :
    @[simp]
    theorem Algebra.TensorProduct.equivPiOfFiniteBasis_apply {R : Type u_1} (A : Type u_2) {V : Type u_3} [CommSemiring A] [CommSemiring R] [Algebra R A] [AddCommGroup V] [Module R V] {ι : Type u_4} (b : Module.Basis ι R V) [Finite ι] (a✝ : TensorProduct R A V) (a✝¹ : ι) :
    (equivPiOfFiniteBasis A b) a✝ a✝¹ = (TensorProduct.piScalarRightHom R A A ι) ((LinearMap.baseChange A b.equivFun) a✝) a✝¹
    noncomputable def Algebra.TensorProduct.equivFinsuppOfBasis {R : Type u_1} (A : Type u_2) {V : Type u_3} [CommSemiring A] [CommSemiring R] [Algebra R A] [AddCommGroup V] [Module R V] {ι : Type u_4} (b : Module.Basis ι R V) :

    The A-algebra isomorphism A ⊗[R] V ≃ₗ[A] (ι →₀ A) coming from an ι-indexed basis of a free R-module V.

    Equations
    Instances For
      @[simp]
      theorem Algebra.TensorProduct.equivFinsuppOfBasis_apply {R : Type u_1} (A : Type u_2) {V : Type u_3} [CommSemiring A] [CommSemiring R] [Algebra R A] [AddCommGroup V] [Module R V] {ι : Type u_4} (b : Module.Basis ι R V) (a✝ : TensorProduct R A V) :
      @[simp]
      theorem Algebra.TensorProduct.equivFinsuppOfBasis_symm_apply {R : Type u_1} (A : Type u_2) {V : Type u_3} [CommSemiring A] [CommSemiring R] [Algebra R A] [AddCommGroup V] [Module R V] {ι : Type u_4} (b : Module.Basis ι R V) (a✝ : ι →₀ A) :